Return to search

Příprava a charakterizace komplexních nanočástic s využitím zejména frakcionace v tokovém poli a pokročilých spektroskopických metod / Preparation and Characterization of Complex Nanoparticles by Field-Flow Fractionation and Advanced Spectroscopic Methods

Liposomes are versatile biocompatible and biodegradable carriers for a variety of medical applications. As the first nanoparticles, they have been approved for pharmaceutical use so far, and many liposome-based preparations are in clinical trials. Classical methods of liposome preparation represent potential limitations in technology transfer from laboratory to industrial scale. New, microfluidic techniques overcome these limitations and offer new possibilities for controlled, continuous preparation of liposomal particles in a laboratory and industrial scale. An important element in the development of new nanoparticle systems is their complex characterization and purification. In addition to the established chromatographic techniques, the Field flow fractionation technique, in particular the Asymmetrical flow Field-flow fractionation, is described. This relatively new technique in conjunction with the MALS/DLS/DAD-UV/dRI online detectors enables the purification and characterization of complex samples. The main advantage of this technique lies in the possibility of separation under native conditions, which plays an important role in the separation of biopolymers in particular. Separation in the “empty” channel then eliminates sample degradation due to unwanted interactions at the stationary phase-sample interface. The theoretical part of this thesis describes the possibilities of preparation, modification, and characterization of liposomal nanoparticles. For this purpose, optical methods based on dynamic light scattering, multi-angle dynamic light scattering and nanoparticle tracking analysis techniques are described, as well as a non-optical method using "particle by the particle" analysis, tunable resistive pulse sensing method. A separate chapter of the theoretical part is dedicated to the technique Asymmetrical flow Field-flow fractionation in connection with the above-mentioned detectors. Important results associated with this work are summarized in the attached scientific paper, together with the result summaries and the author's contributions.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:432947
Date January 2020
CreatorsKotouček, Jan
ContributorsKrejsek,, Jan, Skládal, Petr, Turánek,, Jaroslav
PublisherVysoké učení technické v Brně. Fakulta chemická
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0029 seconds