Return to search

Noninvasive blood pressure pulse detection and blood pressure determination

Abstract
This thesis describes the development of pressure sensor arrays and a range of methods suitable for the long-term measurement of heart rate and blood pressure determination using a cuff and a pressure sensor array on the radial artery. This study also reviews the historical background of noninvasive blood pressure measurement methods, summarizes the accuracies achieved and explains the requirements for common national and international standards of accuracy.

Two prototype series of pressure transducer arrays based on electro-mechanical film (EMFi) were designed and tested. By offering high (∼TΩ) resistance, EMFi is an excellent material for low-current long-term measurement applications. About 50 transducer arrays were built using different configurations and electrode materials to sense low-frequency pressure pulsations on the radial artery in the wrist. In addition to uniform quality, essential requirements included an adequate linear response in the desired temperature range. Transducer sensitivity was tested as a function of temperature in the range of 25–45 °C at varying static and alternating pressures. The average sensitivity of the EMFi used in the transducers proved adequate (∼2.2 mV/mmHg and ∼7 mV/mmHg for normal and high sensitive films) for the intended purpose.

The thesis also evaluates blood pressure measurements by the electronic palpation method (EP) and compares the achieved accuracy to that of the oscillometric method (OSC) using average intra-arterial (IA) blood pressure as a reference. All of these three measurements were made simultaneously for each person. In one test group, measurements were conducted on healthy volunteers in sitting and supine position during increasing and decreasing cuff pressure. Another group, comprising elderly cardiac patients, was measured only in the supine position during cuff inflation. The results showed that the EP method was approximately as accurate as the OSC method with the healthy subjects and slightly more accurate with the cardiac patient group. The advantage of the EP method is that also the wave shape and velocity of arterial pressure pulses is available for further analysis, including the assessment of arterial stiffness.

Identiferoai:union.ndltd.org:oulo.fi/oai:oulu.fi:isbn951-42-8272-8
Date28 November 2006
CreatorsSorvoja, H. (Hannu)
PublisherUniversity of Oulu
Source SetsUniversity of Oulu
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess, © University of Oulu, 2006
Relationinfo:eu-repo/semantics/altIdentifier/pissn/0355-3213, info:eu-repo/semantics/altIdentifier/eissn/1796-2226

Page generated in 0.002 seconds