Return to search

Biological Treatment of Leachates of Microaerobic Fermentation

Microaerobic fermentation (MF) is a process of controlled degradation of organic waste material that occurs in enclosed fermentors under micro-aerobic conditions at near-room temperature. MF processing of vegetal materials progresses to endpoints in about 2-5 weeks. During MF processing, an acidic leachate rich in organic acids and alcohols is produced. The research presented in this thesis focuses on the efficiency of MF pre-processing of feedstock containing fibrous lignocellulosic (FLC) materials; efficiency of microbial and insect larvae-based treatments of MF leachate; tolerance of the Black Soldier fly larvae (BSFL) to various biological inhibitors common in leachate; and effectiveness of using MF and BSFL solid and liquid processing products as agricultural fertilizers. Results indicate that MF is unsuitable for pre-processing of FLC materials. Enhanced MF leachate treatment may increase efficiency of FLC processing though. Leachate can be efficiently treated using BSFL which decrease overall leachate toxicity. BSFL are able to tolerate increased levels of many of the biological inhibitors within the leachate including ethanol, acetate, pH extremes and temperature. MF solid residues increased corn plant growth when amended into soil, but residues resulting from BSFL processing of solid organics stunted corn plant growth. Short-term phytotoxicity of MF leachate was eliminated by diluting it 10 - 10,000 times or through BSFL processing. It can be concluded that MF processing of organics is beneficial for producing solid soil amendments from non-FLC materials and that dilution or BSFL treatment of MF leachate leads to a beneficial liquid fertilizer.

Identiferoai:union.ndltd.org:pdx.edu/oai:pdxscholar.library.pdx.edu:open_access_etds-1904
Date01 January 2012
CreatorsAlattar, Manar Arica
PublisherPDXScholar
Source SetsPortland State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceDissertations and Theses

Page generated in 0.0013 seconds