Improved Scoring Models for Semantic Image Retrieval Using Scene Graphs

Image retrieval via a structured query is explored in Johnson, et al. [7]. The query is structured as a scene graph and a graphical model is generated from the scene graph's object, attribute, and relationship structure. Inference is performed on the graphical model with candidate images and the energy results are used to rank the best matches. In [7], scene graph objects that are not in the set of recognized objects are not represented in the graphical model. This work proposes and tests two approaches for modeling the unrecognized objects in order to leverage the attribute and relationship models to improve image retrieval performance.

Identiferoai:union.ndltd.org:pdx.edu/oai:pdxscholar.library.pdx.edu:open_access_etds-4892
Date28 September 2017
CreatorsConser, Erik Timothy
PublisherPDXScholar
Source SetsPortland State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceDissertations and Theses

Page generated in 0.0019 seconds