Return to search

Smart Memory: An Inexact Content-Addressable Memory

The function of a Content-Addressable Memory (CAM) is to efficiently search the information stored in the memory, by using hardware rather than software with a corresponding improvement in searching speed. This hardware allows a parallel search by matching the data stored in memory to a search key rather than sequentially searching address by address as is done in a Random Access Memory. Although existing CAMs are more efficient in finding relevant information than RAM, there are additional improvements that can be made to further improve its efficiency. For example, previous CAMs use a word parallel searching scheme that can only identify exact matches. To find the best (closest) match, previous CAMs had to use bit serial approaches. Although still more efficient than RAM searching, these CAMs were limited by the word size (bit width) of the memory. Responding to this inefficiency, the CAM described in this thesis improves best-fit searching by using analog design in combination with digital design. This design retains a mismatch line to collect the result of the comparison of each bit of a word which is decoded by a simple flash A/D. This means that after a single operation the best-fit plus all words with zero to three bits of mismatch, are determined. This word/bit parallel searching makes this CAM more efficient than existing CAMs. The best-fit function of this CAM is good for database retrieval, communications and error correction circuitry. By using the high speed searching and the inexact match feature, this CAM also provides efficient sorting and set operations. The accumulated searching time is shortened when compared to regular CAM and RAM. The inexact CAM in this thesis is designed using mixed analog/digital design in a 2~ CMOS technology.

Identiferoai:union.ndltd.org:pdx.edu/oai:pdxscholar.library.pdx.edu:open_access_etds-5676
Date12 February 1993
CreatorsLee, Jack
PublisherPDXScholar
Source SetsPortland State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceDissertations and Theses

Page generated in 0.0055 seconds