Return to search

[pt] FORMAÇÃO DE DEPÓSITOS DE PARAFINA EM LINHAS DE PETRÓLEO: INVESTIGAÇÃO SOBRE AS CARACTERÍSTICAS DA INTERFACE DEPÓSITO-LÍQUIDO / [en] WAX DEPOSITS FORMATION IN PETROLEUM PIPELINES: INVESTIGATION OF THE DEPOSIT-LIQUID INTERFACE CHARACTERISTICS

[pt] Deposição de parafina em linhas de produção e transporte de petróleo é um problema relevante para a indústria. Perdas significativas de produção e com operações de limpeza, desobstrução ou substituição de linhas ocorrem devido à formação de depósitos das frações mais pesadas do petróleo sobre a superfície interna dos dutos operando nas águas frias típicas da produção em águas profundas. A formação de depósitos de parafina nas superfícies dos dutos pode ocorrer quando o petróleo quente proveniente dos poços é resfriado abaixo de uma temperatura crítica onde há o início da formação de cristais de parafina. Esta temperatura é denominada TIAC – temperatura inicial de aparecimento de cristais. A previsão da deposição de parafina através de modelos de simulação é uma ferramenta fundamental para o projeto e operação das linhas de forma economia e segura. Diversos modelos de deposição de parafina vêm sendo desenvolvidos ao longo dos anos, incorporando diferente propostas para o fenômeno de deposição de parafina. No presente trabalho o fenômeno da deposição de parafina foi estudado utilizando um fluido modelo escoado em uma seção de testes anular construída de modo a oferecer condições de contorno e iniciais bem definidas. Acesso óptico ao interior da seção de testes permitiu a obtenção de imagens de qualidade da formação de cristais de parafina. Uma sonda de temperatura de pequenas dimensões foi utilizada para obter informações originais sobre perfis de temperatura no depósito durante sua formação. Também foram obtidas informações sobre a evolução temporal da temperatura da interface do depósito para diferentes vazões e taxas de resfriamento. A formação transitória de nuvens de cristais sobre a interface do depósito e carregados pelo escoamento foi registrada em imagens de alta frequência. A temperatura no interior dessas nuvens foi registrada pela sonda de temperatura. Os resultados mostraram que a interface do depósito evolui a partir da TIAC da solução medida por microscopia, atingindo rapidamente uma temperatura constante de valor intermediário entre a TIAC e a temperatura termodinâmica de mudança de fase da solução. Esta informação contraria umas das hipóteses fundamentais do mecanismo de difusão molecular, base dos modelos acadêmicos e industriais mais utilizados. A presença de cristais de parafina em solução em temperaturas acima da TIAC indica que, localmente, o valor da TIAC difere daquele obtida por microscopia, e que as taxas locais de resfriamento são inferiores às impostas junto à parede fria, permitindo a formação dos cristais acima dos depósitos. Os dados experimentais de qualidade obtidos no presente trabalho são uma importante referência para o teste de modelos de simulação do processo de deposição. / [en] Wax deposition in petroleum production and transportation lines is one of the most relevant problems faced by the industry in order to assure the flow of oil and gas at the designed economical rates. Significant losses occur due to decreased production, line replacements and maintenance costs associated with cleaning operations. Wax deposit formation on the inner wall of the pipes might occur when the warm oil from the well loses heat to the cold environment, typical of deep water production operations, and its temperature reaches a critical value at which wax crystal formation occurs. This critical temperature is the WAT, wax appearance temperature. The prediction of wax deposit formation by simulation models is of fundamental importance for the proper design and operation of petroleum lines. Several wax deposition models have been developed and employed over the years, incorporating different wax deposition mechanisms. In the present work, the wax deposition phenomenon was studied employing a model fluid flowing through an annular test section, built to offer simple and well-defined boundary and initial conditions for the deposition process. Optical access to the interior of the test section allowed for the registration of images of the wax deposit formation. A miniature temperature probe was designed and employed to obtain original information on the temperature profiles within the deposit as it was formed. Also, the probe registered the transient evolution of the deposit interface temperature for different flow rates and cooling rates. The transient formation of a cloud of wax crystals over the deposit interface and carried by the flow was registered by a high frame rate camera. The temperature within this cloud was measured by the temperature probe. The results have shown that the deposit interface temperature evolves from a value equal to the WAT of the fluid measured by microscopy, rapidly reaching a constant value which is intermediate between the WAT and the solution thermodynamic phase change temperature. This information contradicts one of the key assumptions included in the molecular diffusion deposition mechanism, and widely employed in academic and industrial simulation models. Wax deposition in petroleum production and transportation lines is one of the most relevant problems faced by the industry in order to assure the flow of oil and gas at the designed economical rates. Significant losses occur due to decreased production, line replacements and maintenance costs associated with cleaning operations. Wax deposit formation on the inner wall of the pipes might occur when the warm oil from the well loses heat to the cold environment, typical of deep water production operations, and its temperature reaches a critical value at which wax crystal formation occurs. This critical temperature is the WAT, wax appearance temperature. The prediction of wax deposit formation by simulation models is of fundamental importance for the proper design and operation of petroleum lines. Several wax deposition models have been developed and employed over the years, incorporating different wax deposition mechanisms. In the present work, the wax deposition phenomenon was studied employing a model fluid flowing through an annular test section, built to offer simple and well-defined boundary and initial conditions for the deposition process. Optical access to the interior of the test section allowed for the registration of images of the wax deposit formation. A miniature temperature probe was designed and employed to obtain original information on the temperature profiles within the deposit as it was formed. Also, the probe registered the transient evolution of the deposit interface temperature for different flow rates and cooling rates. The transient formation of a cloud of wax crystals over the deposit interface and carried by the flow was registered by a high frame rate camera. The temperature within this cloud was measured by the temperature probe. The results have shown that the deposit interface temperature evolves from a value equal to the WAT of the fluid measured by microscopy, rapidly reaching a constant value which is intermediate between the WAT and the solution thermodynamic phase change temperature. This information contradicts one of the key assumptions included in the molecular diffusion deposition mechanism, and widely employed in academic and industrial simulation models.

Identiferoai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:52883
Date24 May 2021
CreatorsRICARDO CAVALCANTI LINHARES
ContributorsLUIS FERNANDO ALZUGUIR AZEVEDO
PublisherMAXWELL
Source SetsPUC Rio
LanguageEnglish
Detected LanguageEnglish
TypeTEXTO

Page generated in 0.002 seconds