Return to search

Life Cycle Assessment for Improving Sustainability of Aquaculture and Aquaponics

<p dir="ltr">Controlled environment agriculture (CEA) is a practice of food production under optimized conditions to intensify production yield, and thus has potential for addressing food security for a growing population. Aquaculture and aquaponics are two types of CEA that can produce aquatic animals along with plants using non-arable lands and lower inputs of water and nutrients. However, their operations have high energy consumption and generate considerable nutrient-rich sludge and wastewater, making their environmental performance an emerging research focus. This thesis quantitively analyzed the environmental sustainability of aquaponics and aquaculture production using life cycle assessment (LCA).</p><p dir="ltr">The LCA on aquaponics evaluated a marine aquaponics production system that grew shrimp, red orache, minutina and okahajiki, and analyzed the effect of salinity, C/N ratio, and shrimp-to-plant stocking density. The grow-out stage accounted for over 90% of total environmental impacts with electricity use as the predominant contributor. The marine aquaponic production exhibited best environmental performance when operated at low salinity (10 ppt), and high C/N ratio (15) and stocking density (5:1), which can be further improved by 95–99% via the use of wind power as electricity source. Additionally, variation in the prices of aquaponic products was found to improve the system’s environmental impacts by up to 8%.</p><p dir="ltr">The aquaculture LCA focused on shrimp recirculating aquaculture systems (RAS) and evaluated the environmental feasibility of microalgae-based wastewater treatment. Microalgae treatment effectively removed 74% of phosphate in RAS wastewater and thus reduced the freshwater eutrophication potential by 55%. However, its remediation performance was inferior to activated sludge treatment due to different operation scales. Electricity was the principal hotspot of microalgae treatment and made up over 99% of all the environmental impacts, which can be considerably decreased by reducing coal use in the electricity supply. Three utilization pathways for algal biomass (feed ingredient, biodiesel and biogas) were investigated; however, only biogas production was found to show environmental benefits to marine eutrophication remediation owing to the low biomass quantity produced.</p><p dir="ltr">While <a href="" target="_blank">aquaculture and aquaponics</a> play important roles in meeting the globally growing demand for seafood, this thesis provides valuable life cycle inventory data for these fields. Moreover, the LCA models developed in this thesis are useful decision-making tools for aquaculture and aquaponic producers to adapt farming practices with lower environmental footprint.</p>

  1. 10.25394/pgs.24749526.v1
Identiferoai:union.ndltd.org:purdue.edu/oai:figshare.com:article/24749526
Date09 December 2023
CreatorsApril Janai Arbour (17583837)
Source SetsPurdue University
Detected LanguageEnglish
TypeText, Thesis
RightsCC BY 4.0
Relationhttps://figshare.com/articles/thesis/Life_Cycle_Assessment_for_Improving_Sustainability_of_Aquaculture_and_Aquaponics/24749526

Page generated in 0.0023 seconds