Return to search

MEMBERSHIP INFERENCE ATTACKS AND DEFENSES IN CLASSIFICATION MODELS

<p dir="ltr">Neural network-based machine learning models are now prevalent in our daily lives, from voice assistants~\cite{lopez2018alexa}, to image generation~\cite{ramesh2021zero} and chatbots (e.g., ChatGPT-4~\cite{openai2023gpt4}). These large neural networks are powerful but also raise serious security and privacy concerns, such as whether personal data used to train these models are leaked by these models. One way to understand and address this privacy concern is to study membership inference (MI) attacks and defenses~\cite{shokri2017membership,nasr2019comprehensive}. In MI attacks, an adversary seeks to infer if a given instance was part of the training data. We study the membership inference (MI) attack against classifiers, where the attacker's goal is to determine whether a data instance was used for training the classifier. Through systematic cataloging of existing MI attacks and extensive experimental evaluations of them, we find that a model's vulnerability to MI attacks is tightly related to the generalization gap---the difference between training accuracy and test accuracy. We then propose a defense against MI attacks that aims to close the gap by intentionally reduces the training accuracy. More specifically, the training process attempts to match the training and validation accuracies, by means of a new {\em set regularizer} using the Maximum Mean Discrepancy between the softmax output empirical distributions of the training and validation sets. Our experimental results show that combining this approach with another simple defense (mix-up training) significantly improves state-of-the-art defense against MI attacks, with minimal impact on testing accuracy. </p><p dir="ltr"><br></p><p dir="ltr">Furthermore, we considers the challenge of performing membership inference attacks in a federated learning setting ---for image classification--- where an adversary can only observe the communication between the central node and a single client (a passive white-box attack). Passive attacks are one of the hardest-to-detect attacks, since they can be performed without modifying how the behavior of the central server or its clients, and assumes {\em no access to private data instances}. The key insight of our method is empirically observing that, near parameters that generalize well in test, the gradient of large overparameterized neural network models statistically behave like high-dimensional independent isotropic random vectors. Using this insight, we devise two attacks that are often little impacted by existing and proposed defenses. Finally, we validated the hypothesis that our attack depends on the overparametrization by showing that increasing the level of overparametrization (without changing the neural network architecture) positively correlates with our attack effectiveness.</p><p dir="ltr">Finally, we observe that training instances have different degrees of vulnerability to MI attacks. Most instances will have low loss even when not included in training. For these instances, the model can fit them well without concerns of MI attacks. An effective defense only needs to (possibly implicitly) identify instances that are vulnerable to MI attacks and avoids overfitting them. A major challenge is how to achieve such an effect in an efficient training process. Leveraging two distinct recent advancements in representation learning: counterfactually-invariant representations and subspace learning methods, we introduce a novel Membership-Invariant Subspace Training (MIST) method to defend against MI attacks. MIST avoids overfitting the vulnerable instances without significant impact on other instances. We have conducted extensive experimental studies, comparing MIST with various other state-of-the-art (SOTA) MI defenses against several SOTA MI attacks. We find that MIST outperforms other defenses while resulting in minimal reduction in testing accuracy. </p><p dir="ltr"><br></p>

  1. 10.25394/pgs.24983289.v1
Identiferoai:union.ndltd.org:purdue.edu/oai:figshare.com:article/24983289
Date12 January 2024
CreatorsJiacheng Li (17775408)
Source SetsPurdue University
Detected LanguageEnglish
TypeText, Thesis
RightsCC BY 4.0
Relationhttps://figshare.com/articles/thesis/MEMBERSHIP_INFERENCE_ATTACKS_AND_DEFENSES_IN_CLASSIFICATION_MODELS/24983289

Page generated in 0.0019 seconds