Return to search

Ambulance Optimization Allocation

Facility Location problem refers to placing facilities (mostly vehicles) in appropriate locations to yield the best coverage with respect to other important factors which are specific to the problem. For instance in a fire station some of the important factors are traffic time, distribution of stations, time of the service and so on. Furthermore, budget limitation, time constraints and the great importance of the operation, make the optimum allocation very complex. In the past few years, several research in this area have been done to help managers by designing some effective algorithm to allocating facilities in the best way possible. Most early proposed models were focused on static and deterministic methods. In static models, once a facility assigns to a location, it will not relocate anymore. Although these methods could be utilized in some simple settings, there are so many factors in real world that make a static model of limited application. The demands may change over time or facilities may be dropped or added. In these cases a more flexible model is desirable, thus dynamic models are proposed to be used in such cases. Facilities can be located and relocated based on the situations. More recently, dynamic models became more popular but there were still many aspects of facility allocation problems which were challenging and would require more complex solutions. The importance of facility location problem becomes significantly more relevant when it relates to hospitals and emergency responders. Even one second of improvement in response time is important in this area. For this reason, we selected ambulance facility allocation problem as a case study to analyze this problem domain. Much research has been done on ambulances allocation. We will review some of these models and their advantages and disadvantages. One of the best model in this areas introduced by Rajagopalan. In this work, his model is analyzed and its major drawback is addressed by applying some modifications to its methodology. Genetic Algorithm is utilized in this study as a heuristic method to solve the allocation model.
Date01 August 2014
CreatorsNasiri, Faranak
Source SetsSouthern Illinois University Carbondale
Detected LanguageEnglish

Page generated in 0.0013 seconds