Return to search

Optimization studies on thermal and mechanical manufacturing processes for multifilament superconducting tape and wire

There are many parameters that significantly affect the electrical performance of ceramic-core superconducting composite wire and tapes, which remain ambiguous and require more labor on their optimization. BSCCO 2212 has not been paid the attention and investment it deserves. In this regard, all optimization efforts were made for BSCCO 2223. In our work, a practical and inexpensive manufacturing method, thermally and mechanically optimized for Pb doped BiSrCaCuO 2212 superconducting multifilament (38 filaments) wires and tapes, was successfully employed. Optimized parameters can be classified under material, mechanical (deformation) and heat treatment (thermal) subgroups. Parameters involved with materials included investigation of deformation behavior of two different sheath metals; pure silver and 0.02% magnesia dispersion reinforced silver alloy. Pb doped BiSrCaCuO 2212 ceramic superconductor powder, the other source of material related parameters, was synthesized following the "Thermal Co-decomposition or Wet Mix" method. Fabrication of mono and multifilament wires with Oxide Powder in Tube (OPIT) method followed next. Optimization of drawing deformation was practiced to achieve the best ceramic grain alignment and smoother ceramic powder core/metal sheath interface in order to avoid "sausaging" in wires. Rolling of the wire products into tapes by following different deformation regimes was the other manufacturing stage of the project. Variable and constant reduction-per-pass deformation paths were employed to reveal their effects on our composites with distinct sheath material and filament formation. The search for the best (optimum) heat treatment schedule for our Bi2212 superconductor composites, a modified version of "step solidification partial melting", was employed successfully. A solution through tried recipes for the bubbling problem that occurred with our tapes was also addressed.
Electrical performance tests of fully reacted wires were carried out in our laboratory and very promising results were attained.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/1202
Date15 November 2004
CreatorsBasaran, Burak
ContributorsYavuz, Mustafa, McIntyre, Peter M.
PublisherTexas A&M University
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
TypeBook, Thesis, Electronic Thesis, text
Format25151452 bytes, 365519 bytes, electronic, application/pdf, text/plain, born digital

Page generated in 0.0024 seconds