Return to search

A distributed hard real-time Java system for high mobility components

In this work we propose a methodology for providing real-time capabilities to component-based, on-the-fly reconfigurable, distributed systems. In such systems, software components migrate across computational resources at run-time to allow applications to adapt to changes in user requirements or to external events. We describe how we achieve run-time reconfiguration in distributed Java applications by appropriately migrating servers. Guaranteed-rate schedulers at the servers provide the necessary temporal protection and so simplify remote method invocation management. We describe how we manage overhead and resource utilization by controlling the parameters of the server schedulers. According to our measurements, this methodology provides real-time capability to component-based reconfigurable distributed systems in an effcient and effective way.
In addition, we propose a new resource discovery protocol, REALTOR, which is based on a combination of pull-based and push-based resource information dissemination. REALTOR has been designed for real-time component-based distributed applications in very dynamic or adverse environments. REALTOR supports survivability and information assurance by allowing the migration of components to safe locations under emergencies suchas externalattack, malfunction, or lackofresources. Simulation studies show that under normal and heavy load conditions REALTOR remains very effective in finding available resources, and does so with a reasonably low communication overhead.REALTOR 1)effectively locates resources under highly dynamic conditions, 2) has an overhead that is system-size independent, and 3) works well in highlyadverse environments.We evaluate the effectiveness of a REALTOR implementation as part of Agile Objects, an infrastructure for real-time capable, highly mobile Java components.
Date17 February 2005
CreatorsRho, Sangig
ContributorsBettati, Riccardo
PublisherTexas A&M University
Source SetsTexas A and M University
Detected LanguageEnglish
TypeBook, Thesis, Electronic Dissertation, text
Format1742332 bytes, electronic, application/pdf, born digital

Page generated in 0.0021 seconds