Return to search

Spent Nuclear Fuel Self-Induced XRF to Predict Pu to U Content

The quantification of plutonium (Pu) in spent nuclear fuel is an increasingly important safeguards issue. There exists an estimated worldwide 980 metric tons of Pu in the nuclear fuel cycle and the majority is in spent nuclear fuel waiting for long term storage or fuel reprocessing. This study investigates utilizing the measurement of x-ray fluorescence (XRF) from the spent fuel for the quantification of its uranium (U) to Pu ratio. Pu quantification measurements at the front end of the reprocessing plant, the fuel cycle area of interest, would improve input accountability and shipper/receiver differences.
XRF measurements were made on individual PWR fuel rods with varying fuel ages and final burn-ups at Oak Ridge National Laboratory (ORNL) in July 2008 and January 2009. These measurements successfully showed that it is possible to measure the Pu x-ray peak at 103.7 keV in PWR spent fuel (~1 percent Pu) using a planar HPGe detector. Prior to these measurement campaigns, the Pu peak has only been measured for fast breeder reactor fuel (~40 percent Pu). To understand the physics of the measurements, several modern physics simulations were conducted to determine the fuel isotopics, the sources of XRF in the spent fuel, and the sources of Compton continuum. Fuel transformation and decay simulations demonstrated the Pu/U measured peak ratio is directly proportional to the Pu/U content and increases linearly as burn-up increases. Spent fuel source simulations showed for 4 to 13 year old PWR fuel with burn-up ranges from 50 to 67 GWd/MTU, initial photon sources and resulting Compton and XRF interactions adequately model the spent fuel measured spectrum and background. The detector simulations also showed the contributions to the Compton continuum from strongest to weakest are as follows: the fuel, the shipping tube, the cladding, the detector can, the detector crystal and the collimator end. The detector simulations showed the relationship between the Pu/U peak ratio and fuel burn-up over predict the measured Pu/U peak but the trend is the same. In conclusion, the spent fuel simulations using modern radiation transport physics codes can model the actual spent fuel measurements but need to be benchmarked.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2010-08-8570
Date2010 August 1900
CreatorsStafford, Alissa Sarah
ContributorsCharlton, William S.
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
TypeBook, Thesis, Electronic Thesis, text
Formatapplication/pdf

Page generated in 0.0022 seconds