Return to search

Structural study of polyglutamine and molecular mechanism of toll-like receptor signaling

Huntington’s disease (HD) is caused by the expansion of a CAG repeats
encoding polyglutamine (polyQ) in the first exon of Huntingtin (Htt) gene. In HD
patients, polyQ contains 36-183 glutamine residues, whereas normal individuals have a
polyQ of only 8-35 residues. To elucidate this threshold phenomenon of polyQ
aggregation, fluorescence proteins CFP and YFP were attached to both ends of polyQ of
different lengths. FRET (fluorescence resonance energy transfer) was conducted to
characterize the conformation of polyQ in the pre-aggregation state. Our FRET data
show that both the normal and expanded polyQ tracts reveal the same extended structure
in low concentration. Longer polyQ has multiple cooperative binding sites with higher
avidity. PolyQ tracts form aggregates when proteins exceed a critical concentration. The
antibody MW1 Fv fragment binds to polyQ, breaks apart polyQ oligomer and stabilizes
it in a more extended conformation.
The addition of polyproline to the C-terminus inhibits polyQ aggregation by
inducing PPII-like Helix structure. To understand how the flanking sequence affects the
polyQ structure, the structure of Q10P10 peptide in complex with MW1 Fv was determined by protein crystallography and compared with Q10/Fv crystal structure.
Q10P10 peptide bound to Fv has a similar extended structure as Q10 peptide when a
polyproline tract adopts PPII helical structure sticking out of the complex.
Toll-like receptors are transmembrane receptors on different kinds of leukocytes.
They can recognize the structural conserved molecular motifs derived from microbes.
On the upstream of the TLR signal pathway, TLRs recruit the adaptor protein-MyD88
through TIR/TIR domain interaction, and MyD88 recruits the downstream kinases
IRAK4 and IRAK1 through death domain/death domain interaction. Pellino1, a newly
identified E3 ubiquitin ligase, is also involved in TLR signaling by adding polyubiquitin
chain to IRAK1 in conjugation with Ubc13/Uev1a E2 complex. TIR/TIR and DD/DD
binding motifs were studied with techniques including mutagenesis, analytical gel
filtration, NMR spectroscopy and crystallography. We identified a MyD88DD
(E52QR62S) double-mutant that attenuates protein aggregation without interrupting the
binding with IRAK4. This double mutant is a good candidate for structure determination
by NMR spectroscopy. Our ubiquitination assay showed Pellino1 catalyzes
polyubiquitination in the presence of Ubc13/Uev1a in vitro. Needle cluster-shaped
crystals of Pellino1/Ubc13/ Uev1a protein complex were obtained by “hanging drop”
method of vapor diffusion. Once the crystallization conditions are optimized, we will be
able to collect X-ray diffraction data for this E2/E3 complex.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-3110
Date15 May 2009
CreatorsLiu, Zhuyun
ContributorsLi, Pingwei
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
TypeBook, Thesis, Electronic Thesis, text
Formatelectronic, application/pdf, born digital

Page generated in 0.0017 seconds