Return to search

Récupération de micro-énergie renouvelable par couplage multiphysique des matériaux : applications aux bâtiments / Ambient energy harvesting based on coupling effects in materials : applications in buildings

L'objet de l'étude menée vise la récupération de micro-énergie renouvelable au moyen des matériaux piézoélectriques, pyroélectriques et thermoélectriques. Cette étude porte sur l'optimisation de trois aspects de la récupération de micro-énergie : (i) le couplage entre le générateur et l'environnement, (ii) l'efficacité de conversion d'énergie par le choix adéquat de matériaux et (iii) l'extraction de l'énergie électrique. Des études expérimentales et théoriques ont été menées en premier lieu dans des conditions de laboratoire pour une meilleure compréhension des phénomènes de récupération de micro-énergie, puis dans des conditions réelles pour vérifier les performances effectives des dispositifs réalisés. Concernant l'effet thermoélectrique, une nouvelle méthode de récupération de micro-énergie ambiante et solaire est présentée. Cette méthode utilise les générateurs thermoélectriques et les effets des chaleurs sensibles et latentes des matériaux à changement de phase pour produire des micro-énergies aussi bien de jour que de nuit. Une puissance maximale de 1Wm-2 avec un matériau thermoélectrique (Bi2Te3) a été obtenue. Concernant l'effet pyroélectrique, l'effet des variations des vitesses du vent au cours du temps est exploité. Une variation temporelle maximale de la température de 16°C/mn est disponible, ce qui a conduit à une puissance moyenne récupérée de 0.6mWm-2. Concernant l'effet piézo-électrique, une structure mécanique de type harmonica a été développée ainsi qu'une estimation des efforts d'interaction fluide-structure. Le prototype développé fonctionne à partir des vitesses du vent de 2ms-1 et génère une production d'énergie électrique de 8.9mWm-2. A titre d'illustration, une application typique a été présenté (refroidissement de panneau photovoltaïque). Elle montre une augmentation de la production d'électricité autour de 10%. L'application met en évidence l'utilisation des micro-énergies renouvelables au service de la production de macro-énergie. / The aim of this study is to investigate ambient energy harvesting with coupling effect of piezoelectric, pyroelectric and thermoelectric materials. Three basic problems lie in an energy harvesting process with these coupling effects: (i) design and optimize a structure which is able to accumulate the micro-power from the energy source and transform it into the favorable loading on the active material, (ii) improve the energy conversion efficiency according to the suitable choice of material properties and (iii) develop an energy harvesting circuit which is able to improve the energy conversion efficiency. The developed approach was experimental and numerical studies at first in laboratory conditions for deep understanding of energy harvesting process and then in outside conditions for verifying actual performance of the realized devices. On the thermoelectric coupling effect, a new method of harvesting solar and ambient energy is presented. The method is based on thermoelectric and both sensitive and latent heat effects for energy harvesting day and night. A maximum power generation of 1Wm-2 is achieved with thermoelectric material (Bi2Te3). On the pyroelectric effect, the inherent fluctuation with time of the natural wind speed was used. A maximum time variation of temperature of 16°C/minute was achieved which corresponds to an average power of 0.6mWm-2. On the piezoelectric effect, a mechanical structure which is enlightened from harmonica was developed and dynamic fluid-structure problems were addressed. The developed prototype begins to work for wind speed around 2ms-1 and a maximum power generation of 8.9mWm-2 was achieved. Ultimately, a typical building application (automatic control of water cooling photovoltaic panel) with the harvested solar thermal energy is introduced. The proposed application highlights an example of using harvested micro-energy to improve macro-energy production (around 10%).

Identiferoai:union.ndltd.org:theses.fr/2011GRENA005
Date14 April 2011
CreatorsZhang, Qi
ContributorsGrenoble, University of science and technology of China, Agbossou, Amen, Guyomar, Daniel, Feng, Zhihua
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish, French
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0032 seconds