Return to search

Corrigé de localisation dans un environment extérieur sans fil en utilisant estimation, filtrage, la prévision et des techniques de fusion : une application par wifi utilisant le terrain à base de connaissances / Error corrected location determination in an outdoor wireless environment by using estimation, filtering, prediction and fusion techniques : A wifi application by using terrain based knowledge

L’estimation de la position des noeuds de communication sans fil est un domaine de recherche très populaire au cours des dernières années. La recherche de l'estimation de l'emplacement n'est pas limitée à la communication par satellite, mais elle concerne aussi les réseaux WLAN, MANET, WSN et la communication cellulaire. En raison de la croissance et de l’évolution des architectures de communication cellulaire, l’utilisation des appareils portables a augmenté rapidement, et les appels provenant d’utilisateurs mobiles ont également rapidement augmenté. On estime que plus de 50% des appels d'urgence sont émis par des téléphones mobiles. Les chercheurs ont utilisé différentes techniques d'estimation de la position, tels que les satellites, les techniques statistiques et la cartographie. Afin d'atteindre une meilleure précision, certains chercheurs ont combiné deux ou plusieurs techniques. Cependant, l'estimation de la position basée sur le terrain est un domaine qui n'a pas été considéré en profondeur par les chercheurs. Grâce aux ondes radio qui se comportent différemment dans des atmosphères différentes, les calculs à l’aide de quelques paramètres ne sont pas suffisants pour atteindre une précision avec différents terrains, surtout quand il sont totalement basés sur le format RSS, qui entraine des altérations.Cette recherche se concentre sur la localisation des noeuds de communication sans fil en utilisant des techniques géométriques et statistiques, et en prenant en compte l’altération et l'atténuation des terrains. Le modèle proposé est constitué de quatre étapes, qui sont l'estimation, le filtrage, la prédiction et la fusion. Un prototype a été construit en utilisant le WiFi IEEE 802.11x standard. Dans la première étape, en utilisant le rapport signal-bruit de la zone géographique, la péninsule Malaisienne est classée en 13 types de terrains différents.Dans la deuxième étape, les points de données point-à-point sont enregistrés en utilisant la force du signal disponible et en recevant la puissance du signal en considérant différents types de terrains. L’estimation de la localisation se fait au cours de troisième étape en utilisant la célèbre méthode de triangulation. Les résultats estimés sont encore filtrés dans la quatrième étape en utilisant la moyenne et la moyenne des moyennes. Pour la correction des erreurs, le filtrage de l'emplacement est également fait en utilisant la règle des plus proches voisins. La prédiction est affinée au cours de la cinquième étape en utilisant la variance combinée qui permet de prédire la région considérée. L’utilisation des régions d'intérêt contribue à éliminer les emplacements situés à l'extérieur de la zone sélectionnée. Au cours de la sixième étape, les résultats du filtrage sont fusionnés avec la prédiction afin d'obtenir une meilleure précision.Les résultats montrent que les recherches effectuées permettent de réduire les erreurs de 18 m à 6 m dans des terrains fortement atténués, et de 3,5 m à 0,5 m dans des terrains faiblement atténués. / Location estimation of wireless nodes has been a very popular research area for the past few years. The research in location estimation is not limited to satellite communication, but also in WLAN, MANET, WSN and Cellular communication. Because of the growth and advancement in cellular communication architecture, the usage of handheld devices has increased rapidly, therefore mobile users originating calls are also increasing. It is estimated that more than 50% emergency calls are originated by mobile phones. Researchers have used different location estimation techniques, such as satellite based, geometrical, statistical and mapping techniques. In order to achieve accuracy, researchers have combined two or more techniques. However the terrain based location estimation is an area which is not considered by researchers extensively.Due to the fact that radio waves behave differently in different atmospheres, the calculation of few parameters is not sufficient to achieve accuracy in different terrains, especially when it is totally based on RSS which is carrying impairments.This research is focusing on the localization of wireless nodes by using geometrical and statistical techniques with the consideration of impairment/attenuation of terrains. The proposed model is consisting of four steps, which are estimation, filtering, prediction and fusion. A prototype has been built using the WiFi IEEE 802.11x standard. In step one, by using signal to noise ratio, the peninsular Malaysia geographical area is categorized into 13 different terrains/clutters. In step two, point-to-point data points are recorded by using available signal strength and receive signal strength with the consideration of different terrains. Estimation of the location is done in step three by using the triangulation method. The results of estimated locations are further filtered in step four by using average and mean of means. For error correction, filtering of the location is also done by using k- nearest neighbor rule. Prediction is done in step five by using combined variance which predicts the region of interest. Region of interest helps to eliminate locations outside of the selected area. In step six filtering results are fused with prediction in order to achieve accuracy. Results show that the current research is capable of reducing errors from 18 m to 6 m in highly attenuated terrains and from 3.5 m to 0.5 m in low attenuated terrains.

Identiferoai:union.ndltd.org:theses.fr/2011LAROS353
Date04 November 2011
CreatorsAlam, Muhammad Mansoor
ContributorsLa Rochelle, Universiti Kuala Lumpur Malaisie, Boursier, Patrice, Mohd Su'ud, Mazliham
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0024 seconds