Spectroscopie linéaire et ultra-rapide de nanoparticules métalliques : de l’ensemble au nano-objet individuel / Linear and ultra-fast spectroscopy of metallic nanoparticles : from ensemble to individual nano-objects

En passant de l’état massif à la nanoparticule les matériaux métalliques voient certaines de leurs caractéristiques modifiées de manière notable comme par exemple les propriétés optiques avec l’apparition d’une résonance dans le spectre optique, la Résonance Plasmon de Surface Localisée (RPSL) responsable du changement de couleur des nanoparticules métalliques. Les propriétés vibrationnelles et thermiques de nanoparticules métalliques ont été étudiées à l’aide d’une technique de Spectroscopie Femtoseconde. Nous avons montré qu’il était possible d’exciter et de détecter optiquement des fréquences de vibrations mécaniques dans le domaine térahertz pour des nanoparticules de platine composées de moins de cent atomes. D’autre part l’augmentation des effets dus aux interfaces a été mis en évidence sur les propriétés thermiques de nanoparticules d’or et d’argent. La résistance thermique à l’interface, résistance de Kapitza, voit son rôle augmenter lors du transfert thermique à l’échelle nanométrique. Une corrélation entre les valeurs mesurées et les impédances acoustiques des matériaux composants les interfaces a été mise en évidence. Nous avons aussi montré qu’elle augmente quand la température diminue de 300K à 70K. Les propriétés optiques de nanoparticules non sphériques ont été étudiées à l’aide de la Spectroscopie à Modulation Spatiale. Cette technique a permis de repérer puis de caractériser des nano-bâtonnets d’or individuels. Nous avons montré que la largeur spectrale de la RPSL est fortement dépendante de la géométrie des nanoparticules (diamètre et longueur). Cette double dépendance n’est pas prédite par les modèles classiques ou quantique existants / The size reduction of metals, from bulk to nanoparticles, induces significant modifications of their properties. For instance, the optical properties evolve and a new resonance, the localized surface plasmon resonance, appears in the optical spectrum and is responsible for the change of colors of metallic nanoparticles. This work is focused on studies of metals’ properties at the nanometric scale. In the first part, the vibrational and thermal properties are studied with a femtosecond spectroscopy technique. It is shown that it is possible to excite and detect optically vibrational frequencies in the terahertz domain by studying platinum nanoparticles formed by less than 100 atoms. The study of the thermal properties of the metallic nanoparticles (gold and silver) has shown that the boundary effect increases. This thermal boundary resistance, known as the Kapitza resistance, plays a dominant role in the heat transfer at the nanometric scale. A correlation between the experimental values of the thermal boundary resistance and the acoustic impedances of the boundary’s materials has been found. We have also shown that the Kapitza resistance is a decreasing function of the temperature in the 70-300K range. In the second part, the effect of the size reduction on the optical properties of non-spherical nanoparticles is observed. The Spatial Modulation Spectroscopy technique is used in order to locate and study individual gold nanorods. It is shown that the two geometrical parameters (the length and the diameter) of the nanorods influence the spectral linewidth of the localized surface plasmon resonance. This effect is not predicted by existing classical or quantum models

Identiferoai:union.ndltd.org:theses.fr/2011LYO10163
Date27 September 2011
CreatorsJuvé, Vincent
ContributorsLyon 1, Del Fatti, Natalia
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0029 seconds