Return to search

Schémas boîte hermitiens : algorithmes rapides pour la discrétisation des équations aux dérivés partielles / Hermitian box schemes : fast solvers for the discretisation of partial differential equations

Dans ma thèse, je présente un nouveau schéma aux différences d'ordre 4 pour le problème de Poisson dans un carré et dans un cube avec conditions limites de Dirichlet. Ce schéma généralise l'approche donnée par Croisille en Compting 2006. La conception du schéma est basée sur une formulation mixte combinant l'approximation de gradient par une dérivée hermitienne d'ordre 4 avec une formulation conservative discrète sur des boîtes de longueur 2h. L'étude comporte les deux aspects suivants.• Premièrement, montrer qu'une précision d'ordre 4 est obtenue pour les deux inconnues, la solution et son gradient.• Deuxièmement, donner un algorithme de résolution directe rapide basé sur la formule de Sherman-Morrison-Woodbury et la transformée en sinus rapide. Plusieurs résultats numériques montrent que la complexité algorithmique est en O(N^2 log_2 (N )) en dimension 2 et O(N^3 log_2 (N )) en dimension 3.De très bonnes performances de calcul ont été obtenues sur une machine de bureau. A titre d'exemple, un calcul sur un maillage 1024 × 1024 est effectué en moins de cinq secondes sur un PC ordinaire. Ce solveur sert de pré conditionnement des problèmes elliptiques non réguliers. Une autre application concerne les maillages cartésiens multiéchelle. Ce type de maillages permet une résolution locale également d'ordre 4 sur des zones raffinées. Le raffinement est récursif. Les schémas boîte sont actuellement de plus en plus étudiés. Ils sont étudiés par I. Greff en 2003 pour différents problèmes elliptiques avec les méthodes d'éléments finis. Ils ont été récemment étudié par J.B. Perot en 2007.Les perspectives principales de ce travail sont les suivantes :- Généralisation des schémas boîte sur une grille cartésienne à des problèmes avec obstacles.La méthode envisagée est de type “embedded boundary”.- Utilisation du schéma présenté pour des applications en physique des particules.L'opérateur de moyenne Π^0 f_{i,j} correspond à la charge électrique dans la boîte K_{i,j} . Le schéma sert dans ce cas à calculer le potentiel et le champ électromagnétique.- Utilisation du schéma pour des modèles complexes d'équations elliptiques, comme MEMS(Microelectromechanical Systems), travail récent des Prof. Ghoussoub, Ward, Lindsay, et des équations modélisant des streamers, projet actuel à CWI du Prof. Hundsdorfer / My work is devoted to both Applied Mathematics and Scientific Computing. Concerning Scientific Computing I worked on the design and implementation of efficient fast solvers which are a crucialissue to perform practical computations. The use of such solvers in canonical geometries is at theheart of many computing codes in physics. Examples are fluid dynamics (compressible or incom-pressible Navier-Stokes equations), the Helmholtz equation, problems in astrophysics or in geophysics.In my thesis entitled « Hermitian Box Scheme - Fast Algorithms to solve Partial Differential Equations » supervised by Prof. J.P. Croisille 1 , I have developed a new compact scheme called “Hermitian Box” scheme. The focus is on Cartesian or cubic geometries with an emphasis on the fast resolution procedure. It extends the approach given by Croisille in Computing 2006. The design is based on a “Hermitian Box” approach, combining approximations of the gradient and of a discrete form of the conservation equations of “boxes” of length 2h.The main properties of the new scheme is that it is fourth order accurate for the unknown u andits gradient ∇u and satisfy the maximum principles. The code that is developed so far treats the Poisson problem in one, two and three dimensions. This problem is still the bottleneck of many computing codes in physics such as particle/grids problems in electromagnetism, gravitation, ... etc.As a first example of the computing efficiency of the new scheme we give the results obtained sofar for the three-dimensional Poisson problem in a cube−∆u(x, y, z) = f (x, y, z), in Ω = ]0, 1[x]0,1[x]0,1[,u = g, on ∂Ω.In the numerical tables, we report the maximum errors for the “Hermitian Box” (HB) scheme with different grids. The numerical results show that the HB scheme achieves fourth order convergence rate for both u and ∇u. We compare the accuracy of our scheme with the five points Laplacian scheme (CDS). The scheme CDS achieves a second order convergence rate. We note that the HB scheme yields a solution which is more accurate than that by CDS. For example, to obtain a solution with maximum error 10−4 , CDS needs a mesh-size h = 1/64, but HB only needs a mesh-size h = 1/8. If this fact is translated into CPU time, we see that HB scheme is hundreds of times faster than CDS to provide a numerically calculated solution of same accuracy.Our scheme was also used for the discretization of non separable elliptic problems in two dimensions such as−div(a(x, y)∇u(x, y)) = f (x, y), in Ω =]a, b[×]c, d[,u = g, on ∂Ω.Where a(x,y) is a regular function satisfying 0 < a(x, y) for (x, y) ∈ Ω.Meanwhile, due to the high accuracy on the boundary, the HB scheme was found very accurate when coupled to a Local Defect Correction technique in cases where the solution has a steep gradient in a small domain Ω_l

Identiferoai:union.ndltd.org:theses.fr/2011METZ024S
Date09 November 2011
CreatorsAbbas, Ali
ContributorsMetz, Croisille, Jean-Pierre
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0027 seconds