Return to search

Graph-based variational optimization and applications in computer vision / Optimisation variationnelle discrète et applications en vision par ordinateur

De nombreuses applications en vision par ordinateur comme le filtrage, la segmentation d'images, et la stéréovision peuvent être formulées comme des problèmes d'optimisation. Récemment les méthodes discrètes, convexes, globalement optimales ont reçu beaucoup d'attention. La méthode des "graph cuts'", très utilisée en vision par ordinateur est basée sur la résolution d'un problème de flot maximum discret, mais les solutions souffrent d'un effet de blocs,notamment en segmentation d'images. Une nouvelle formulation basée sur le problème continu est introduite dans le premier chapitre et permet d'éviter cet effet. La méthode de point interieur employée permet d'optimiser le problème plus rapidement que les méthodes existantes, et la convergence est garantie. Dans le second chapitre, la formulation proposée est efficacement étendue à la restauration d'image. Grâce à une approche du à la contrainte et à un algorithme proximal parallèle, la méthode permet de restaurer (débruiter, déflouter, fusionner) des images rapidement et préserve un meilleur contraste qu'avec la méthode de variation totale classique. Le chapitre suivant met en évidence l'existence de liens entre les méthodes de segmentation "graph-cuts'", le "randomwalker'', et les plus courts chemins avec un algorithme de segmentation par ligne de partage des eaux (LPE). Ces liens ont inspiré un nouvel algorithme de segmentation multi-labels rapide produisant une ligne de partage des eaux unique, moins sensible aux fuites que la LPE classique. Nous avons nommé cet algorithme "LPE puissance''. L'expression de la LPE sous forme d'un problème d'optimisation a ouvert la voie à de nombreuses applications possibles au delà de la segmentation d'images, par exemple dans le dernier chapitre en filtrage pour l'optimisation d'un problème non convexe, en stéréovision, et en reconstruction rapide de surfaces lisses délimitant des objets à partir de nuages de points bruités / Many computer vision applications such as image filtering, segmentation and stereovision can be formulated as optimization problems. Recently discrete, convex, globally optimal methods have received a lot of attention. Many graph-based methods suffer from metrication artefacts, segmented contours are blocky in areas where contour information is lacking. In the first part of this work, we develop a discrete yet isotropic energy minimization formulation for the continuous maximum flow problem that prevents metrication errors. This new convex formulation leads us to a provably globally optimal solution. The employed interior point method can optimize the problem faster than the existing continuous methods. The energy formulation is then adapted and extended to multi-label problems, and shows improvements over existing methods. Fast parallel proximal optimization tools have been tested and adapted for the optimization of this problem. In the second part of this work, we introduce a framework that generalizes several state-of-the-art graph-based segmentation algorithms, namely graph cuts, random walker, shortest paths, and watershed. This generalization allowed us to exhibit a new case, for which we developed a globally optimal optimization method, named "Power watershed''. Our proposed power watershed algorithm computes a unique global solution to multi labeling problems, and is very fast. We further generalize and extend the framework to applications beyond image segmentation, for example image filtering optimizing an L0 norm energy, stereovision and fast and smooth surface reconstruction from a noisy cloud of 3D points

Identiferoai:union.ndltd.org:theses.fr/2011PEST1013
Date10 October 2011
CreatorsCouprie, Camille
ContributorsParis Est, Najman, Laurent
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0027 seconds