MNT et observations multi-locales du réseau de drainage d'un petit bassin versant rural dans une perspective d'aide à la modélisation spatialisée / Hydrological connectivity of rural catchment from spatial analyses of drainage network functionning to enhance distributed hydrological modelling

Le fonctionnement hydrologique des petits bassins versants ruraux de quelques km² à régime intermittent est complexe car de nombreux processus affectent le cheminement des eaux de surface. Il en résulte une variabilité de la densité de drainage et de la dynamique de l'écoulement au sein du réseau hydrographique. Cette dynamique de fonctionnement est peu prise en considération du fait des difficultés d'ordres techniques et économiques pour suffisamment observer les mouvements de l'eau à la surface. Or, c'est une information essentielle pour décrire la connectivité hydrologique du bassin qui représente la distribution spatiale et temporelle des surfaces contributives à l'écoulement par leur connexion au réseau de drainage. De telles connaissances seraient utiles pour traiter la question de la séparation entre production et transfert effectuée dans les modèles hydrologiques, avec la perspective de proposer des simulations plus justes physiquement. L'objectif de la thèse est de proposer des approches spatiales pour mieux intégrer la dynamique de fonctionnement du réseau de drainage en lien étroit avec la réponse hydrologique du bassin. Le Mercier (7 km²) est le site expérimental situé en tête du bassin versant de l'Yzeron (142 km²) localisé à l'ouest de l'agglomération lyonnaise. Ce bassin sur socle cristallin est composé essentiellement de surfaces agricoles et de forêts. Son fonctionnement hydrologique est affecté par l'existence de zones humides contributives. Un réseau de routes et de fossés anthropiques s'ajoute aux talwegs naturels. Les méthodes développées relèvent de deux approches : (1) la microtopographie issue d'un MNT LiDAR (Light Detection and Ranging) permet d'identifier et décrire des extensions fonctionnelles du réseau de drainage d'une part au niveau des linéaires artificiels avec un apport minimal de données externes, et d'autre part au niveau des talwegs naturels en distinguant la présence ou l'absence d'un chenal de drainage, signe d'un potentiel d'écoulement concentré. (2) Un dispositif de 18 capteurs limnimétriques est mis en œuvre pour assurer un suivi permanent de la réponse hydrologique par emboitement de stations au sein du réseau hydrographique. Cette observation « multi-locale » permet de mesurer l'évolution de la densité de drainage, d'identifier localement la hiérarchie des facteurs qui affectent la réponse et de distinguer différentes dynamiques de transfert dans le réseau de drainage. Les résultats des approches par la microtopographie et par observations multi-locales aident à identifier des régions du bassin au comportement différent. Ils permettent notamment de mieux comprendre les interrelations entre occupation du sol et processus hydrologiques, voire géomorphologie et processus. Ces résultats valident donc l'intérêt du capteur LiDAR et celui d'un dispositif in situ souple et adaptable pour proposer un « pattern de drainage » réaliste en limitant le recours au terrain. Enfin, ce pattern décrivant la tendance d'organisation spatiale des écoulements, est paramétré dans une fonction de transfert géomorphologique calculée sur la base des cheminements fournis par un MNT. L'usage de cet outil constitue une ébauche mais conforte l'idée d'un couplage entre le pattern de drainage et la réponse du bassin versant dans des conditions d'intensité pluvieuse soutenue et d'humidité modérée pour expliquer la réponse rapide du bassin. L'ensemble des résultats justifie donc la mise en avant de la nature transitoire du réseau de drainage pour paramétrer des modèles spatialisés avec la perspective d'améliorer leurs capacités prédictives. / Hydrological functioning of small temporary catchments depends on several processes governing transfer from surface water paths. As a result flow dynamics and drainage density are highly variable in space and time. But this complex dynamic is not enough taken into account because of technical and economical limitations. However, it is essential to describe hydrological connectivity as a spatial and temporal pattern of contributive areas to the drainage network. Get this pattern may facilitate the conceptual distinction between production and transfer functions to improve spatially distributed models. The aim of the study is to develop methods to describe spatial and temporal patterns of the drainage network in relation to catchment hydrological responses. The Mercier headwater catchment (7 km²) is located into the Yzeron catchment near Lyon (France). The land use is principally composed of agricultural plots and forested areas. The hydrographical network consists of natural thalwegs and many roadside ditches and agrarian ditches. Both approaches are developed for this purpose: first, the micro-topography from a LiDAR DEM helps to describe potential flow lengths from drainage network extensions during rainfall events. On the one hand, main artificial ditches are mapped from the DEM with minimal corrections from ancillary data. On the other hand, channelized or unchannelized reaches are located from the DEM into the natural thalwegs. Second, a water level sensor device is set up to record hydrological response from 18 stations located in nested sub-catchments into the hydrological network. These synoptic measurements are used to estimate temporal changes in drainage density, to analyze local hydrological functioning, or to describe flood propagation to the outlet. Results from both approaches lead to the identification of specific behaviors inside the hydrological network controlled by functional thresholds. These patterns help to better understand the relationship between land use and hydrological processes. The results also show the interest of LiDAR DEM and the suitability of adaptable distributed measurements as a substitute to heavy in situ studies for the identification of drainage patterns. Finally, to test the assumption of a gradual drainage network extension during a rainfall event, a simplified drainage pattern is processed into a geomorphological transfer function. This tool is fairly easy to set and is used to initiate an association between local hydrological knowledge and global catchment response. Both approaches lead to conclude that various drainage pattern must be integrated into spatially distributed models according to hydrological conditions, rather than a single hydrological network.

Identiferoai:union.ndltd.org:theses.fr/2012GRENU042
Date27 March 2012
CreatorsSarrazin, Benoit
ContributorsGrenoble, Braud, Isabelle, Puech, Christian
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0033 seconds