Return to search

Analyse de la dynamique du facteur de transcription HSF1 "Heat Shock Factor 1" par microscopie de fluorescence / Analysis of Heat Shock Factor dynamics using fluorescence microscopy

La majorité des études sur la dynamique des facteurs de transcription en cellules vivantes s'accordent sur une dynamique rapide. Il existe cependant quelques exceptions, comme la dynamique du facteur de transcription HSF « Heat Shock Factor », sur les chromosomes polyténiques de drosophile. Notre projet a consisté à étudier la dynamique d'HSF1 dans des cellules humaines. L'exposition des cellules à un stress tel qu'un choc thermique induit une réponse ubiquitaire et transitoire, dont la fonction est de protéger les cellules contre les effets délétères du stress. Au cours d'un choc thermique, plusieurs phénomènes se produisent : i) un arrêt global de la transcription excepté pour certains gènes tels que ceux codant pour les protéines de choc thermique (HSPs), dont l'expression est sous le contrôle du facteur de transcription HSF1. ii) une activation d'HSF1 qui se relocalise de façon rapide et transitoire sur les corps nucléaires de stress (nSBs), où il induit la transcription des séquences satellite III. Les nSBs forment un site d'activité naturellement amplifié et visible en microscopie. Nous avons utilisé deux techniques complémentaires pour étudier la dynamique d'HSF1 en cellules vivantes : le recouvrement de fluorescence après photoblanchiment (FRAP) et la spectroscopie à corrélation de fluorescence multi-confocale (mFCS), qui permet l'analyse FCS en plusieurs points simultanément. En cellules HeLa, la protéine HSF1-eGFP présente une dynamique rapide qui est significativement ralentie suite à un choc thermique. En mFCS, nous avons obtenu des constantes de diffusion de 14 µm²/s avant choc thermique et de 10 µm²/s après choc thermique. En FRAP, le temps de demi-recouvrement est de 0,2 s avant choc thermique, 2,6 s après choc thermique dans le nucléoplasme et 65 s sur les corps nucléaires de stress. Le ralentissement de la dynamique d'HSF1 s'explique par deux phénomènes : i) la formation de complexes de haut poids moléculaire, ii) une augmentation des interactions avec la chromatine. Pour mieux caractériser le changement de dynamique d'HSF1 après choc thermique, plusieurs mutants ont été analysés. Le domaine de trimérisation est indispensable pour le changement de dynamique après choc thermique, alors que le domaine de liaison à l'ADN et le domaine de transactivation n'ont que peu d'effet sur le changement de dynamique. Il ne peut donc pas être expliqué uniquement par les interactions directes à la chromatine du domaine de liaison à l'ADN, ni même par les liaisons indirectes du domaine de transactivation via d'autres protéines. La protéine HSF1 pourrait interagir de façon aspécifique avec la chromatine lors de la recherche de site de liaison, ou d'autres protéines via d'autres domaines pourraient entrainer des interactions indirectes avec la chromatine. / The majority of studies made on transcription factors dynamics on living cells agree with a fast dynamics process. However, there is some exceptions such as the dynamics of the transcription factor HSF “Heat Shock Factor” on drosophila polytenic chromosome. My project is to study HSF1 dynamics in human living cells. Cells exposure to a stress such as heat shock induces a transient and ubiquitous response that function's to protect cells against the deleterious effect of stress. During the course of a heat shock, several phenomenons take place: i) a global arrest of transcription, with the exception of some genes, such as those coding for the heat shock proteins (hsp), which expression is under the control of HSF1. ii) Activation of HSF1 that relocalize in a fast and transient way to nuclear stress bodies (nSBs), where it induces satellite III transcription. nSBs act as a natural amplification gene array, visible on microscopy. We have used two complementary techniques to look at HSF1 dynamics in living cells: Fluorescence recovery after photobleaching (FRAP) and multiconfocal fluorescence correlation spectroscopy (mFCS) that allow FCS analysis at several position simultaneously. On HeLa cells, HSF1-eGFP protein has a fast dynamics which is significantly slowed down following heat shock. On mFCS, we obtained a diffusion constant of 14 µm²/s before heat shock, and 10 µm²/s after heat shock. On FRAP, the half recovery time is 0.2 s before heat shock, 2.6 s after heat shock in the nucleoplasm and 65 s in nuclear stress bodies. HSF1 dynamics slowing down may be explain by two phenomenons: i) formation of high molecular mass complexes, ii) rise of interaction of HSF1 with chromatin. To better characterize changes in HSF1 dynamics after heat shock, several mutants have been analyzed. The trimerization domain of HSF1 is essential for dynamics changes after heat shock, while DNA binding domain (DBD) and transactivation domain (TAD) have only little effects on dynamics changes. These changes cannot only be explained by direct interaction of DNA binding domain with chromatin, neither by indirect interaction of the transactivation domain with other protein partners. HSF1 could be able to interact non-specifically with chromatin during the search for specific binding sites. Also other proteins via other domains might induce indirect binding to chromatin.

Identiferoai:union.ndltd.org:theses.fr/2012GRENV030
Date19 October 2012
CreatorsHerbomel, Gaëtan
ContributorsGrenoble, Souchier, Catherine
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0029 seconds