Return to search

Développement de biomatériaux nanofibreux/microporeux actifs pour la régénération osseuse / Smart nanofibrous electrospun membrane for bone regeNEration

Les nanotechnologies sont en train de révolutionner le domaine biomédical et plus particulièrement l’ingénierie tissulaire. Elles permettent aujourd’hui, non seulement de réparer mais aussi de régénérer les tissus. Cette nanomédecine régénérative est particulièrement adaptée pour répondre aux besoins importants liés aux maladies dégénératives, au vieillissement et aux traumatismes.Mon travail de thèse s’inscrit dans ce contexte et concerne l’élaboration de biomatériaux nanofibreux et microporeux actifs pour la régénération osseuse. Notre objectif essentiel est de réaliser un implant biodégradable nanostructuré permettant d’accélérer la réparation du tissu osseux. Notre stratégie innovante repose non seulement sur la mise en oeuvre de membranes par électrospinning mais aussi sur leur fonctionnalisation par des facteurs de croissance. Cette fonctionnalisation originale a consisté à enrober ces principes actifs dans des nanoréservoirs en utilisant la technique multicouche de polyélectrolytes. Des membranes de polycaprolactone (PCL) nanofibreuses et microporeuses ont été obtenues par électrospinning puis les fibres ont été enrobées de réservoirs contenant le facteur ostéoinducteur, la protéine morphogénique osseuse 2 (BMP-2). L’induction osseuse engendrée par ces réservoirs actifs a été mise en évidence in vitro après culture d’ostéoblastes humains primaires. Des expérimentations in vivo chez la souris ont permis de confirmer l’accélération de la régénération osseuse grâce à ces nanoréservoirs.Cette même stratégie a été validée in vivo, chez la souris, en utilisant des membranes de collagène d’origine animal commerciales utilisées en clinique. L’activité de ces membranes fonctionnalisées par des nanoréservoirs de BMP-2 est en cours d’analyse dans le cadre de tests précliniques pour une application maxillofaciale et parodontale. / Nanobiotechnology enables the emergence of entirely new classes of bioactive devices intended for targeted intracellular delivery for more efficiency and less toxicities. Tissue engineering is an interdisciplinary field that has attempted to implement a variety of processing methods for synthetic and natural polymers to fabricate tissue and organ regeneration scaffolds.We report here the first demonstration of bone regeneration by using a strategy based on a synthetic nanostructured membrane. This electrospun membrane is manufactured by using a FDA approved polymer, PCL, (polycaprolactone), and functionalized with nanoreservoirs of a growth factor (BMP-2). Our expected outcomes are the development of clinical applications in the field of tissue engineering and nanomedecine and particularly in bone regeneration.We propose the development of smart nanostructured active implants for regenerative medicine. Our strategycombines a synthetic biodegradable electrospun nanofibrous membrane based on PCL and a bioactive growth factor (BMP-2) entrapped into polymer nanoreservoirs built atop the nanofibers according to the layer-by-layer technology. In this study, by using primary osteoblasts, we have shown the capacity of these sophisticated implants to promote and accelerate not only in vitro bone induction; but also, in vivo, bone formation (mouse model).We have also validated our strategy, in vivo (mouse model), by using an already used in the clinic collagen membrane (animal origin) to accelerate bone regeneration. This unique strategy is used to entrap, protect and stabilize the therapeutic agent into polymer coating acting as nanoreservoirs enrobing fibers of membranes.

Identiferoai:union.ndltd.org:theses.fr/2012STRAE030
Date30 March 2012
CreatorsFerrand, Alice
ContributorsStrasbourg, Schlatter, Guy, Jessel-Benkirane, Nadia
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0063 seconds