Return to search

Formation et évolution de tourbillons dans la nébuleuse protoplanétaire / Formation and evolution of vortices in protoplanetary nebula

L'objectif de cette thèse est d'étudier la formation de tourbillons dans la zone morte des disques protoplanétaires. Un code numérique 3D compressible a été mis au point et utilisé pour cette étude. Deux instabilités hydrodynamiques sont envisagées pour former les tourbillons: l'instabilité de Rossby et l'instabilité barocline.La première entraine la fragmentation d'une sur-densité annulaire en une chaîne de tourbillons qui se rattrapent les uns les autres et finissent par fusionner en un seul tourbillon qui reste stable sur de très longues durées lorsque son rapport d’aspect est suffisamment grand, et possède une structure quasi bidimensionnelle. En revanche, les tourbillons tridimensionnels de petits rapport d'aspect sont affectés par l’instabilité elliptique qui les détruits en quelques rotations. Seuls persistent ceux de grand rapport d'aspect.L'instabilité barocline, fondamentalement non linéaire, produit des tourbillons à partir de perturbations d'amplitude finies ; ces tourbillons sont ensuite amplifiés et fusionnent en tourbillons plus gros si le disque est stratifié de façon instable et s’il permet aussi le transfert de chaleur. Deux types de transfert thermique ont été envisagés pour étudier cette instabilité qui conduit alors à des différences significatives dans la structure des tourbillons formés. Le rapport d'aspect étant lié à la vorticité, l'amplification des tourbillons se traduit par une diminution de leur rapport d'aspect, et les rend donc sujet à l'instabilité elliptique. Cependant, ils ne sont pas détruit et gardent une structure tourbillonnaire grâce à l'amplification barocline. / The objective of this thesis is to study the formation of vortices in the dead-zone of protoplanetary disks. A 3D compressible numerical code has been performed and used for this study. Two hydrodynamical instabilities are considered for vortex formation: the Rossby wave instability and the baroclinic instability.The first one leads tp the fragmentation of an annular bump into a chain of vortices that catch one another and merge in a single vortex; this vortex remains stable on very long durations when its aspect ratio is large enough and has a quasi two-dimensional structure. In contrast, tridimensional small aspect ratios vortices are affected by the elliptical instability and are destroyed in a few rotation periods. Only vortices with large aspect ratios can survive.The baroclinic instability, a basically non-linear one, can produce vortices from small amplitude perturbations; these vortices are then amplified and merge in bigger vortices if the disk is unstably stratified and also permits heat transfer. Two types of heat transfer have been considered leading to significant differences in the structures of the resulting vortices. As aspect ratio and vorticity are strongly related, the baroclinic amplification reduces the aspect ratio and, so, make the vortex sensitive to the elliptical instability. However, such vortices are not destroyed and keep a vertical structure thanks to the baroclinic amplification.

Identiferoai:union.ndltd.org:theses.fr/2013AIXM4756
Date12 November 2013
CreatorsRichard, Samuel
ContributorsAix-Marseille, Barge, Pierre, Le Dizès, Stéphane
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0024 seconds