Return to search

HF characterization and modeling of magnetic materials for the passive components used in EMI filters / Caractérisation et modélisation HF des matériaux magnétiques pour la conception des composants passifs des filtres CEM

Les commutations des interrupteurs dans les convertisseurs statiques sont à l’origine des principales perturbations faisant l’objet de la compatibilité électromagnétique (CEM). La réduction de ces perturbations se fait, entre autre, à l’aide de filtres CEM qui nécessitent l’utilisation de noyaux magnétiques. Ces noyaux doivent posséder des propriétés physiques adaptées pour assurer le bon fonctionnement du filtre CEM dans la gamme des hautes fréquences (HF), et ce, quel que soit les contraintes d’utilisation. Ainsi, dans ce travail, des méthodologies et des modèles sont développés afin de dimensionner le filtre CEM dans les conditions réelles de fonctionnement. Tout d’abord, le noyau magnétique est étudié pour de faibles signaux d’excitation en proposant une méthode de caractérisation de la perméabilité magnétique complexe en HF. Deux modèles, l’un analytique et l’autre en circuit équivalent, sont développés. Dans un second temps, le matériau est considéré saturable. C’est pourquoi, une approche non-linéaire est développée pour représenter le matériau, avec et sans hystérésis, tout en y incluant le comportement capacitif du matériau en HF. De plus, une méthode expérimentale, basée sur l’utilisation d’une spire plate, est proposée pour caractériser l’hystérésis magnétique.Enfin, une amélioration de la méthode d’injection de courant est proposée, notamment par l’utilisation de nouvelles sondes, pour caractériser l’impédance d’entrée d’un convertisseur. Cette impédance, combinée avec les modèles précédents de matériaux, sont utilisée pour déterminer la perte d’insertion d’un filtre CEM. Les résultats de simulations sont validés par la mesure expérimentale. / The switching semiconductor devices in static-converters are the main source of electromagnetic interference (EMI). Reduction of these emissions can be achieved by different techniques including the use of EMI filters which design requires the use of magnetic cores. These must have adequate physical properties allowing the EMI filter to fulfill its task within a specified frequency range whatever the operating conditions (saturation, temperature…). Therefore, in the present work, some methodologies and models are developed in order to be able to design the EMI filter within its real conditions of operation. First, the magnetic core is considered in small-signal conditions and a method is proposed to measure the complex magnetic permeability in high frequency (HF). Two models, analytical and lumped-circuit network, are developed to account for the HF characteristics. In a second step, the material is considered saturable as the EMI filter can be subjected to more important currents, leading to the modification of its main characteristics. Then, a non-linear modeling approach, with and without hysteresis effect, including a material capacitance is considered for modeling the magnetic core. Additionally, a technique is proposed to characterize in HF the magnetic hysteresis loop from a single turn flat coil configuration.Finally, an improved current injection method, with new designed current probes, is used to characterize the input impedance of a converter. The impedance, combined with the developed small-signal and high-signal material models, is used to predict the insertion loss of an EMI filter. Simulation results are validated by the experiment.

Identiferoai:union.ndltd.org:theses.fr/2013LIL10061
Date07 October 2013
CreatorsCuellar Quispe, Carlos Enrique
ContributorsLille 1, Idir, Nadir, Benabou, Abdelkader, Margueron, Xavier
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0201 seconds