Sous l’effet des sollicitations mécaniques répétées induites par les passages des trains, on observe l’apparition de fissures de fatigue de contact dans les rails. Une fois amorcées, celles-ci peuvent se propager et mener à la rupture du rail. Dans un contexte d’intensification du trafic et d’augmentation globale des vitesses de circulation, il devient stratégique pour SNCF d’optimiser sa politique de maintenance. Afin de définir des pas de surveillance adaptés et une planification optimisée des opérations de maintenance, une meilleure connaissance des mécanismes d’endommagement par fatigue du rail s’avère nécessaire. Tendre vers cette stratégie de maintenance prédictive passe par la mise en place d’outils de simulation numérique adaptés. Dans ce contexte, une chaîne d’outils a été développée : détermination des sollicitations transmises au rail, des champs de contraintes et de déformations résiduelles, localisation des zones critiques vis-à-vis du risque de fissuration. L’étape suivante consiste à estimer le risque lié à la présence de fissures et à étudier leurs propagations. Elle constitue une partie des objectifs de ces travaux de thèse. La résolution du problème tri-dimensionnel d’une structure fissurée, avec contact et frottement entre les lèvres, est effectuée grâce à un modèle tri-dimensionnel éléments finis étendus multi-échelles. Ce modèle fait appel à une formulation mixte stabilisée où chaque champ est écrit à l’aide d’enrichissement. La fissure est représentée grâce à une stratégie implicite-explicite. Le problème est résolu à l’aide du solveur non-linéaire LATIN. Une étude empirico-numérique a permis de proposer des formules a priori assurant à la méthode de résolution un taux de convergence proche de l’optimal. La simulation de la propagation des fissures de fatigue est réalisée à l’aide de critères spécifiques, adaptés à un chargement multi-axial et non-proportionnel, et d’une loi de propagation dédiée en mode mixte. La confrontation des résultats de simulation avec des essais réalisés sur une configuration cylindre-plan a validé la stratégie X-FEM/LATIN à deux échelles. Tous ces développements ont été implémentés dans le code de calcul éléments finis CAST3M. Des contraintes résiduelles réalistes, provenant d’un logiciel externe, ont été introduites. Cette étape a requis la mise en place d’une procédure de transfert des champs entre les deux maillages (celui utilisé pour le calcul des contraintes résiduelles et celui utilisé pour la résolution du problème de mécanique élastique linéaire de la rupture). L’étude de la flexion du rail a révelé l’influence de ce phénomène uniquement lors du passage du chargement sur la fissure.Enfin, une étude numérique a montré la très forte influence de l’orientation du chargement tangentiel, des contraintes résiduelles et de la présence de plusieurs fissures sur la direction et les vitesses de propagation des fissures de fatigue. / To optimize the rail grinding strategy, the prediction of crack growth rates has a vital role. Contact, with friction between the crack faces, notably occurs in rolling contact fatigue (RCF) problems. These time-dependent, multi-axial, non proportional loadings may lead to a crack initiation and propagation, and sometimes to the development of very complex 3D crack network. Numerical simulations of frictional fatigue crack are efficiently performed using the eXtended Finite Element Method (X-FEM). Within this method, the mesh does not need to conform to the crack geometry. Most difficulties associated to complex mesh generation around the crack and the re-meshing steps during the propagation are hence avoided. A 3D two-scale frictional contact fa-tigue crack model developed within the X-FEM framework is presented. It allows the use of a refined discretization of the crack interface independent from the underlying finite element mesh and adapted to the frictional contact crack scale. The model is used here to analyze the crack propagation, rate and direction, under rolling contact fatigue. The wheel-rail contact loading is modeled as a traveling hertzian load. The stress intensity factors are computed at the crack tips during the wheel passage. Criteria for determining crack growth direction under multiaxial non proportional conditions and mixed mode Paris’ law are used. Actual residual stresses are accounted for in the simulation. They are determined thanks to a dedicated model used at SNCF in which the asymptotic mechanical state of the rail is computed when submitted to cyclic loads. A non-uniform elastic-plastic stabilized state is calculated and introduced, by projection of the mechanical fields onto the finite element mesh, in the crack propagation simulation. All this strategy has been implemented in CAST3M and is now used to model 3D frictional crack growth under RCF.
Identifer | oai:union.ndltd.org:theses.fr/2014ISAL0033 |
Date | 20 March 2014 |
Creators | Trollé, Benoit |
Contributors | Lyon, INSA, Baietto, Marie-Christine, Gravouil, Anthony |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0028 seconds