Tous les domaines de la science et de la technologie produisent de gros volume de données hétérogènes. L'exploration de tels volumes de données reste toujours un défi. Peu de travaux ciblent l'exploration et l'analyse de données séquentielles multidimensionnelles et hétérogènes. Dans ce travail, nous proposons une contribution à la découverte de connaissances dans les données séquentielles hétérogènes. Nous étudions trois axes de recherche différents: (i) l'extraction de motifs séquentiels, (ii) la classification et (iii) le clustering des données séquentielles. Tout d'abord, nous généralisons la notion de séquence multidimensionnelle en considérant la structure complexe et hétérogène. Nous présentons une nouvelle approche MMISP pour extraire des motifs séquentiels à partir de données séquentielles multidimensionnelles et hétérogènes. MMISP génère un grand nombre de motifs séquentiels comme cela est généralement le cas pour toues les algorithmes d'énumération des motifs. Pour surmonter ce problème, nous proposons une nouvelle façon de considérer les séquences multidimensionnelles hétérogènes en les associant à des structures de patrons. Nous développons une méthode pour énumérer seulement les motifs qui respectent certaines contraintes. La deuxième direction de recherche est la classification de séquences multidimensionnelles et hétérogènes. Nous utilisons l'analyse formelle de concept (AFC) comme une méthode de classification. Nous montrons l'intérêt des treillis de concepts et de l'indice de stabilité pour classer les séquences et pour choisir quelques groupes intéressants de séquences. La troisième direction de recherche dans cette thèse est préoccupé par le regroupement des données séquentielles multidimensionnelles et hétérogènes. Nous nous basons sur la notion de sous-séquences communes pour définir une mesure de similarité permettant d'évaluer la proximité entre deux séquences formées d'une liste d'ensemble d'items. Nous utilisons cette mesure de similarité pour construire une matrice de similarité entre les séquences et pour les segmenter en plusieurs groupes. Dans ce travail, nous présentons les résultats théoriques et un algorithme de programmation dynamique permettant de compter efficacement toutes les sous-séquences communes à deux séquences sans énumérer toutes les séquences. Le système résultant de cette recherches a été appliqué pour analyser et extraire les trajectoires de soins de santé des patients en cancérologie. Les données sont issues d' une base de données médico-administrative incluant des informations sur des patients hospitalisent en France. Le système permet d'identifier et de caractériser des épisodes de soins pour des ensembles spécifiques de patients. Les résultats ont été discutés et interprétés avec les experts du domaine / All domains of science and technology produce large and heterogeneous data. Although a lot of work was done in this area, mining such data is still a challenge. No previous research work targets the mining of heterogeneous multidimensional sequential data. This thesis proposes a contribution to knowledge discovery in heterogeneous sequential data. We study three different research directions: (i) Extraction of sequential patterns, (ii) Classification and (iii) Clustering of sequential data. Firstly we generalize the notion of a multidimensional sequence by considering complex and heterogeneous sequential structure. We present a new approach called MMISP to extract sequential patterns from heterogeneous sequential data. MMISP generates a large number of sequential patterns as this is usually the case for pattern enumeration algorithms. To overcome this problem, we propose a novel way of considering heterogeneous multidimensional sequences by mapping them into pattern structures. We develop a framework for enumerating only patterns satisfying given constraints. The second research direction is in concern with the classification of heterogeneous multidimensional sequences. We use Formal Concept Analysis (FCA) as a classification method. We show interesting properties of concept lattices and of stability index to classify sequences into a concept lattice and to select some interesting groups of sequences. The third research direction in this thesis is in concern with the clustering of heterogeneous multidimensional sequential data. We focus on the notion of common subsequences to define similarity between a pair of sequences composed of a list of itemsets. We use this similarity measure to build a similarity matrix between sequences and to separate them in different groups. In this work, we present theoretical results and an efficient dynamic programming algorithm to count the number of common subsequences between two sequences without enumerating all subsequences. The system resulting from this research work was applied to analyze and mine patient healthcare trajectories in oncology. Data are taken from a medico-administrative database including all information about the hospitalizations of patients in Lorraine Region (France). The system allows to identify and characterize episodes of care for specific sets of patients. Results were discussed and validated with domain experts
Identifer | oai:union.ndltd.org:theses.fr/2014LORR0066 |
Date | 02 July 2014 |
Creators | Egho, Elias |
Contributors | Université de Lorraine, Napoli, Amedeo, Jay, Nicolas |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds