Return to search

Approximation de surfaces par des varifolds discrets : représentation, courbure, rectifiabilité / Discrete varifolds and surface approximation : representation, curvature, rectifiability

La motivation initiale de cette thèse est l'étude d'une discrétisation volumique de surface (Chapitre 2) naturellement liée à la structure de varifold. Le point clé est qu'il est possible de munir d'une structure de varifold la plupart des objets utilisés pour représenter ou discrétiser des surfaces c'est-à-dire aussi bien des objets tels que les sous variétés ou les ensembles rectifiables que des objets tels que des nuages de points ou encore la discrétisation volumique proposée, ce qui permet d'étudier dans un cadre unifié une surface et sa discrétisation. Une difficulté essentielle est que, généralement, ces structures discrètes ne sont pas rectifiables, ce qui soulève la question suivante : comment assurer qu'un varifold, obtenu comme limite de discrétisations volumiques, soit une surface, au moins en un sens faible ? De façon plus précise : quelles conditions sur une suite de varifolds quelconques assurent que le varifold limite est rectifiable (Chapitre 3) ou encore qu'il est à variation première bornée (Chapitre 5) ? On obtient des conditions quantitatives assurant la rectifiabilité grâce à des énergies liées aux nombres beta de Jones. On s'intéresse ensuite à la régularité du varifold limite en termes de courbure (variation première). On a essayé de contrôler la variation première en utilisant des techniques de construction de mesures de type packing (Chapitre 4), une forme régularisée de la variation première d'un varifold. Cette régularisation permet de définir des énergies de Willmore approchées qui Gamma convergent dans l'espace des varifolds vers l'énergie de Willmore ainsi qu'une approximation de la courbure qui est testée numériquement dans le Chapitre 6 / The starting point of this work is the study of a volumetric surface discretization model naturally connected to the varifolds structure introduced in Chapter 2. The point is that not only the discretization we propose can be endowed with a structure of varifold but also a great part of objects used for surface representation and discretization (triangulation, cloud points, level sets etc.) so that we can use varifolds tools to study in some unified setting different ways of discretizing surfaces. An important point to overcome is that these structures are generally not rectifiable so that we address the following question: how to ensure that the limit of a sequence of such discrete surfaces is regular? More precisely, what conditions on a sequence of varifolds (not necessarily rectifiable nor with bounded variation) ensure that the limit varifold is rectifiable (Chapter 3) or has bounded first variation (Chapter 5)? We obtain quantitative conditions of rectifiability for variflods considering energies linked to Jones' beta numbers. We then address the question in terms of first variation (generalized curvature) of a limit varifold. We first try a packing measure construction of the first variation of a varifold V (Chapter 4), then we define a regularized form of the classical first variation, allowing us to exhibit an energetic condition ensuring that a limit of a sequence of varifolds has bounded first variation. We use this regularized form to build an approximate Willmore energy Gamma-converging in the class of varifolds to the Willmore energy. In Chapter 6, we test numerically a notion of approximate curvature derived from the regularized first variation

Identiferoai:union.ndltd.org:theses.fr/2014LYO10310
Date12 December 2014
CreatorsBuet, Blanche
ContributorsLyon 1, Masnou, Simon, Leonardi, Gian Paolo
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0158 seconds