Apport des méthodes de survie nette dans le pronostic des lymphomes malins non hodgkiniens en population générale / Contribution of net survival methods to the prognosis of Non-Hodgkin lymphoma in population studies

L'étude de la survie nette des patients atteints de cancer en population générale permet d'apprécier l'efficience globale du système de soin d'un pays. La survie nette se définit comme la survie qui serait observée si la seule cause de décès possible était le cancer. Ce concept est fondamental dans les comparaisons entre zones géographiques et/ou périodes de diagnostic dont l'intérêt est d'estimer les variations spécifiques de la mortalité due au cancer. Le concept de survie nette permet de prendre en compte les éventuelles différences de mortalité naturelle entre les groupes comparés. Actuellement, seuls deux outils estiment la survie nette sans biais : l'estimateur non paramétrique de Pohar-Perme et la modélisation paramétrique ajustée sur certaines covariables (essentiellement l'âge). Par ailleurs, les outils paramétriques s'étant perfectionnés, de nouveaux modèles flexibles permettent de modéliser les effets complexes des variables sur la mortalité. Ce travail repose sur la modélisation du taux de mortalité en excès à la suite d'un lymphome malin non hodgkinien, en se basant sur le modèle proposé par Remontet et al. et sur la nécessité de modéliser conjointement les effets complexes des covariables (telles que le temps de suivi, l'année de diagnostic et l'âge) sur la mortalité à l'aide d'une stratégie de modélisation adaptée. L'effet des variables est restitué sur la survie nette mais aussi sur le taux de mortalité en excès ce qui représente un élément nouveau dans les études de survie. Deux applications ont été menées sur des bases de données collaboratives de population : d'une part sur les données françaises du réseau FRANCIM à la suite d'un diagnostic de lymphome folliculaire entre 1995 et 2010 et, d'autre part, sur les données européennes d'EUROCARE-5 après un lymphome folliculaire ou un lymphome B diffus à grandes cellules diagnostiqué entre 1996 et 2004. Les résultats montrent que la dynamique du taux de mortalité en excès au cours du temps de suivi varie en fonction du sous-type de lymphome, de l'âge et de la zone géographique. Les tendances de cette dynamique en fonction de l'année de diagnostic sont également différentes / The net survival of cancer patients in population studies is the most relevant indicator to assess the overall efficiency of the healthcare system of a country. Net survival is defined as the survival that would be observed if the sole cause of death were cancer. This concept is crucial in comparative studies (between geographical areas and/or periods of diagnosis) that estimate specific variations of cancer-related deaths. Net survival takes into account potential differences in mortality patterns between groups. Currently, two methods provide unbiased estimations of net survival: the non-parametric estimator of Pohar-Perme and the parametric model adjusted on specific covariates (mainly, the age at diagnosis). Moreover, new improved parametric tools, such as flexible models, can model the complex covariate effects on mortality. In this work, we modeled the excess mortality rate after a non Hodgkin lymphoma diagnosis, with a model developed by Remontet et al. In addition, we used an appropriate model-building-strategy to model jointly the complex effects of some covariates (such as the time elapsed since diagnosis, the year of diagnosis, and age) on the excess mortality. Finally, this approach allowed for the covariate effects on the net survival and on the excess mortality rate. We applied this method to two different collaborative databases: first on the French database FRANCIM (1995 to 2010) to study the excess mortality after diagnosis of follicular lymphoma, then on the European data of EUROCARE-5 (1996 to 2004) to study the excess mortality after diagnosis of follicular lymphoma and diffuse large B-cell lymphoma. According to the results, the dynamics of the excess mortality rate varies over the time elapsed since diagnosis according to the lymphoma subtype, the age, and the geographical area. The trends of these dynamics over the years of diagnosis are different too

Identiferoai:union.ndltd.org:theses.fr/2015LYO10120
Date17 September 2015
CreatorsMounier, Morgane
ContributorsLyon 1, Bossard, Nadine, Giorgi, Roch
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench, English
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0062 seconds