Return to search

Drosophila CG4572 protein and the spread of the RNAi antiviral immune signal / La protéine CG4572 de Drosophile et la propagation du signal ARNi immun antiviral

Au cours d’une infection virale, la survie des cellules dépend d’informations adéquatement distribuées, reçues et traitées, permettant l’établissement d’une réponse antivirale performante. La communication cellulaire est donc essentielle pour permettre la propagation de signaux immuns protecteurs à tout l’organisme.Chez les insectes, la principale réponse antivirale est l’ARN interférent (ARNi), activé lors de la détection d’ARN double brin (ARNdb) d’origine virale. Le mécanisme antiviral de l’ARNi peut être cellulaire ou systémique. Dans la première catégorie, la régulation de l’expression génique est limitée à la cellule dans laquelle l’ARNdb est produit, alors que dans la seconde, cette même régulation s’effectue dans des cellules distinctes de celles produisant l’ARNdb. Chez les insectes, l’ARNi systémique reste très peu décrit.Ma thèse explore le rôle de la protéine de drosophile CG4572/DORA, dans les mécanismes permettant l’établissement de l’ARNi systémique. J’ai également cherché la nature des signaux déclencheurs de cette réponse antivirale. Nous montrons l’existence de deux mécanismes de communication cellulaire permettant la propagation de signaux antiviraux: des vésicules extracellulaires et des nanotubes. Nous mettons en évidence que des vésicules contenant DORA et des fragments d’ARN viraux peuvent se propager dans les mouches en leur conférant une protection antivirale spécifique. Nous montrons également pour la première fois la présence de nanotubes membranaires qui contiennent des protéines de la machinerie ARNi ainsi que DORA.Les mécanismes que nous proposons sont pour la première fois associés à la réponse antivirale chez Drosophila melanogaster. / During viral infection, cell survival will depend on adequately giving, receiving and processing information to establish an efficient antiviral immune response. Cellular communication is therefore essential to allow the propagation of immune signals that will confer protection to the entire organism.The major antiviral defense in insects is the RNA interference (RNAi) mechanism that is activated by detection of viral double-stranded RNA (dsRNA). The antiviral RNAi mechanism can be divided in cell- and non-cell- autonomous. In cell-autonomous RNAi, the silencing process is limited to the cell in which the viral dsRNA is produced. In non-cell-autonomous (systemic) RNAi, the interfering effect occurs in cells different from where the viral dsRNA was produced. In insects the systemic RNAi response remains poorly characterized. My PhD explores the role of the Drosophila CG4572/DORA protein in the establishment of systemic antiviral RNAi. It also investigates the nature of immune signals that trigger the antiviral response. I provide evidence for the existence of two different mechanisms of cell-cell communication that allow the spread of the immune signal: extracellular vesicles and tunneling nanotubes. I describe that DORA-positive extracellular vesicles carry fragments of viral RNAs that can spread and confer specific antiviral protection in flies. I also present the characterization of tunneling nanotubes (TNTs) containing components of the RNAi machinery, DORA and dsRNA and I hypothesize on the use of TNTs in the spread of the immune signal.Both mechanisms of cell-to-cell communication are coupled for the first time to the antiviral response in Drosophila melanogaster.

Identiferoai:union.ndltd.org:theses.fr/2015PA066713
Date23 September 2015
CreatorsKarlikow, Margot
ContributorsParis 6, Saleh, Maria-Carla
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0027 seconds