Return to search

Coupled vortex dynamics in spin-torque oscillators : from resonant excitation to mutual synchronization / Vortex magnétiques couplés dans des oscillateurs à transfert de spin : de l'excitation résonante à la synchronisation mutuelle

La découverte de la magnétorésistance géante en 1988 est considérée comme la date de naissance d’un nouveau et dynamique champ de recherche appelé l’électronique de spin. La riche physique associée au transport de spin devrait révolutionner le futur de la nanoélectronique. Dans ce cadre les nano-oscillateurs à transfert de spin (STOs) se sont positionnés comme des candidats sérieux pour le développement d’une nouvelle génération de dispositifs rf basés sur l’électronique de spin.Au début de ma thèse, l’important bruit de phase des STOs restait une contrainte majeure limitant les perspectives technologiques à ce type d’oscillateurs. Dans cette thèse nous avons cherché à contrôler la dynamique des STOs et à réduire leur bruit phase en développant différentes stratégies : (i) l’optimisation des propriétés des matériaux magnétiques utilisés (ii) l’excitation de modes couplés dans des systèmes hybridés (iii) la stabilisation de la dynamique de la phase d’un STO avec un signal extérieur de référence (iv) la synchronisation mutuelle de différents oscillateurs pour améliorer la cohérence spectrale et la puissance des STOs. Nous focalisons en particulier sur le cas de STO à base de vortex magnétique qui présentent intrinsèquement des cohérences spectrales plus élevées que celles d’autres types d’oscillateurs.Dans une première partie, nous nous proposons d’identifier et d’étudier les différents mécanismes qui régissent et contrôle la dynamique d’un STO à base de vortex magnétique dans les régimes auto-oscillant et non-autonomes. Nous mettons tout d’abord en évidence que l’excitation de modes couplés permet de contrôler les propriétés rf d’un oscillateur unique en prenant l’exemple d’un STO à base de deux vortex magnétiques couplés. Par la suite, nous étudions la synchronisation « parfaite » de ces STOs à base de vortex avec un courant rf de référence. Nous corrélons l’observation d’une largeur de raie d’un hertz et d’un bruit de phase minimum de -90 dBc/Hz à 1kHz de la porteuse dans l’état synchronisé à une absence de glissement de phase, i.e. à l’absence de phénomène de désynchronisation. Le fort couple de Field-like planaire mesuré dans ces STOs représente un outil précieux pour contrôler le processus de synchronisation. Dans le cas des STOs à double vortex, un tel contrôle nous permet d’observer des phénomènes physiques exotiques allant de la synchronisation simultanée de plusieurs modes, à de l’auto-synchronisation en passant par des dynamiques de synchronisation incohérentes.Dans une seconde partie, nous proposons différents concepts innovants de dispositifs rf à base de vortex magnétique. Nous présentons tout d’abord les bases d’une boucle à retard de phase permettant d’asservir un STO. En prenant avantage du fort couple de Field Like, nous développons un nouveau schéma de détection rf, plus efficace que les actuelles diodes Schottky, basé sur un renversement d’aimantation en expulsant réversiblement le cœur de vortex à l’aide d’un courant rf. Finalement, nous démontrons qu’il est possible de synchroniser électriquement deux STOs connectés directement en parallèle ou en série, ou à l’aide d’une ligne à retard. Nous montrons ainsi qu’une forte amélioration de la cohérence spectrale (d’un facteur 2) et de la puissance (d’un facteur 4 pour un maximum de 1.6 μW) peut être obtenues dans l’état synchronisé. A l’aide de la ligne à retard, nous mettons par ailleurs en évidence le rôle crucial du déphasage entre les deux STOs sur les propriétés de l’état synchronisé. Ces résultats prometteurs ouvrent la voie vers la synchronisation de réseaux de STOs sans champ appliqué et sans ligne à retard entre les oscillateurs.Dix ans après leur découverte, les oscillateurs à transfert de spin n’ont toujours pas dévoilé tout leur potentiel et de nouvelles applications sont maintenant envisagées, allant de dispositif rf classiques à des circuits logiques et dispositifs bio-inspirés basés sur les STOs. / The discovery of the giant magnetoresistance in 1988 is considered as the birth date of a new and dynamic research field called spintronics. The rich physics associated with spin transport has created a breakthrough for the future of nano-electronics. In the magnetism roadmap, spin-torque oscillators (STOs) are candidates for future generation of spintronic based rf-devices.At the beginning of this thesis, one major issue of spin-torque oscillators remained their poor spectral coherence. To overcome this issue, we have investigated different approaches: (i) the development of magnetic materials with a low damping and large spin-polarization, (ii) the study of collective mode dynamics in hybridized magnetic systems (iii) the stabilization of the STO dynamics with a reference external signal (iv) the synchronization of multiple STOs to enhance both their power and spectral coherence. We focus our work on vortex based STOs which present higher spectral coherences than other kinds of STOs.In a first part, we study the different mechanisms that can drive and stabilize the dynamics of a vortex based STO in the autonomous and non-autonomous regimes. We first highlight that the excitation of collective modes allows the harnessing the rf-properties of a single and isolated in a double vortex based STO. Then we report the ``perfect'' phase-locking of a STO with an external rf-current. To go beyond this analysis, we notice that a 1 Hz minimum linewidth and a flat phase noise level of -90 dBc/Hz at 1 kHz from the offset frequency in the locked state could be associated with the absence of phase slips, i.e desynchronization events. We demonstrate that the locking process is driven by a Field-like in-plane torque which gives the possibility to control with precision the STO locking process. In our double vortex based STO, we can even observe exotic behaviors such as multi-mode synchronization, self-resonance and eventually incoherent motion. Such a degree of control, unexpected for a nano-scale oscillator, is particularly promising for the development of STO based nanodevices.In a second part, we propose different concepts of spintronic rf-devices based on vortex STOs. We describe the basis of an on-chip STO based phase locked loop. By taking advantage of the large Field-like torque in our STOs, we develop a new radio-frequency detection scheme, more efficient than the state of the art Schottky diode, based on magnetization switching through the resonant and reversible expulsion of the vortex core. Finally, we show the first experimental observation of the electrical synchronization of two STOs connected directly in parallel or in series, or with an electrical delay line. In the synchronized state, we show a strong improvement of both the spectral coherence (by a factor 2) and the output power (by a factor 4, up to 1.6 μW). We also demonstrate, with an electrical delay line, the strong impact of the phase shift between the two STOs on the synchronized regime. These promising results open the way for the synchronization of STO arrays at zero field and without electrical delays.Ten years after their discovery, spin-torque oscillators have thus not yet revealed all their potential and promising applications could be soon targeted, in order to realize a spin logic circuit, bio-inspired spintronic devices and more classical rf-applications.

Identiferoai:union.ndltd.org:theses.fr/2015SACLS233
Date11 December 2015
CreatorsLebrun, Romain
ContributorsUniversité Paris-Saclay (ComUE), Cros, Vincent
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image, StillImage

Page generated in 0.0024 seconds