Return to search

Modélisation de la structure et de la réactivité de la pérovskite LaFeO3 dopée / Modeling the structure and reactivity of LaFeO3 doped perovskite

La dépollution des gaz d’échappement des véhicules essence est opérée par catalyse trois voies (CTV). Ce terme désigne la combinaison de trois réactions : l’oxydation du CO en CO2, la combustion des hydrocarbures imbrûlés et la réduction des NOx. Les catalyseurs 3-voies actuels sont constitués de nanoparticules de métaux nobles (Pt, Rh, Pd…) dispersés sur un support oxyde. En raison de leur prix élevés de nombreuse recherche vise à limiter leur utilisation. Utilisées depuis le milieu des années 70 en catalyse en tant que support, les pérovskites sont une alternative possible. Dans le cas de la catalyse trois voies, les capacités oxydo-réductrices intrinsèques du fer font de la pérovskite LaFeO3 (LFO) un candidat intéressant pour la réduction des NOx et l’oxydation du CO. A ce jour, les mécanismes réactionnels de même que les sites actifs de ce catalyseur sont inconnus. Il est donc important de les mettre en évidence pour permettre une amélioration rationnelle des activités et sélectivités des catalyseurs 3 voies de nouvelle génération. Dans cette étude nous avons cherché à déterminer le mécanisme réactionnel sur la pérovskite. Dans un premier nous avons cherché à étudier l’état de surface de la pérovskite en présence d’eau et déterminer les surfaces présentes. Puis nous avons calculé la thermochimie d’un ensemble de réaction élémentaire sur les surfaces pour enfin proposé un mécanisme réactionnel possible de réduction de NO et d’oxydation de CO. Après détermination des états de transition nous avons cherché à optimiser la formulation de la pérovskite en dopant les surfaces en métaux de transition. / Pollution control of exhaust gases from gasoline vehicles is operated by three-way catalysis (TWC). This term refers to the combination of three reactions: the oxidation of CO to CO2, the combustion of unburned hydrocarbons and NOx reduction. Actually three-way catalysts are made of noble metal nanoparticles (Pt, Rh, Pd ...) deposed on an oxide support. Due to their high and fluctuating price numerous study are trying to limit their use. One possibility are perovskites which are used since the mid-70s in catalysis as support. These materials have also been a recent revival of interest as a carrier or as the active phase to the extent that their structural properties reduce the amounts of noble metals by limiting the aggregation of the metal nanoparticles. In the case of three-way catalysis, the redox intrinsic iron capabilities make the perovskite LaFeO3 (LFO) an interesting candidate for the reduction of NOx and oxidation of CO. To date, the reaction mechanisms, as well as the active sites of the catalyst are unknown. It is important to highlight them for rational improvement activities and selectivity of the catalysts 3 new generation pathways. In this study we sought to determine the reaction mechanism on perovskite. At first we tried to study the surface condition of the perovskite in the presence of water and determine these surfaces. Then we calculated the thermochemistry of a set of elementary reaction on surfaces to finally proposed possible reaction mechanism of NO reduction and CO oxidation. After determining transition states we sought to optimize the formulation of the perovskite by doping transition metal surfaces.

Identiferoai:union.ndltd.org:theses.fr/2016LIL10166
Date18 November 2016
CreatorsBlanck, Dimitri
ContributorsLille 1, Paul, Jean-François, Berrier, Elise
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0016 seconds