Return to search

Méthode de Newton revisitée pour les équations généralisées / Newton-type methods for solving inclusions

Le but de cette thèse est d'étudier la méthode de Newton pour résoudre numériquement les inclusions variationnelles, appelées aussi dans la littérature les équations généralisées. Ces problèmes engendrent en général des opérateurs multivoques. La première partie est dédiée à l'extension des approches de Kantorovich et la théorie (alpha, gamma) de Smale (connues pour les équations non-linéaires classiques) au cas des inclusions variationnelles dans les espaces de Banach. Ceci a été rendu possible grâce aux développements récents des outils de l'analyse variationnelle et non-lisse tels que la régularité métrique. La seconde partie est consacrée à l'étude de méthodes numériques de type-Newton pour les inclusions variationnelles en utilisant la différentiabilité généralisée d'applications multivoques où nous proposons de linéariser à la fois les parties univoques (lisses) et multivoques (non-lisses). Nous avons montré que, sous des hypothèses sur les données du problème ainsi que le choix du point de départ, la suite générée par la méthode de Newton converge au moins linéairement vers une solution du problème de départ. La convergence superlinéaire peut-être obtenue en imposant plus de conditions sur l'approximation multivaluée. La dernière partie de cette thèse est consacrée à l'étude des équations généralisées dans les variétés Riemaniennes à valeurs dans des espaces euclidiens. Grâce à la relation entre la structure géométrique des variétés et les applications de rétractions, nous montrons que le schéma de Newton converge localement superlinéairement vers une solution du problème. La convergence quadratique (locale et semi-locale) peut-être obtenue avec des hypothèses de régularités sur les données du problème. / This thesis is devoted to present some results in the scope of Newton-type methods applied for inclusion involving set-valued mappings. In the first part, we follow the Kantorovich's and/or Smale's approaches to study the convergence of Josephy-Newton method for generalized equation (GE) in Banach spaces. Such results can be viewed as an extension of the classical Kantorovich's theorem as well as Smale's (alpha, gamma)-theory which were stated for nonlinear equations. The second part develops an algorithm using set-valued differentiation in order to solve GE. We proved that, under some suitable conditions imposed on the input data and the choice of the starting point, the algorithm produces a sequence converging at least linearly to a solution of considering GE. Moreover, by imposing some stronger assumptions related to the approximation of set-valued part, the proposed method converges locally superlinearly. The last part deals with inclusions involving maps defined on Riemannian manifolds whose values belong to an Euclidean space. Using the relationship between the geometric structure of manifolds and the retraction maps, we show that, our scheme converges locally superlinearly to a solution of the initial problem. With some more regularity assumptions on the data involved in the problem, the quadratic convergence (local and semi-local) can be ensured.

Identiferoai:union.ndltd.org:theses.fr/2016LIMO0066
Date30 September 2016
CreatorsNguyen, Van Vu
ContributorsLimoges, Adly, Samir, Huynh, Van Ngai
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0027 seconds