Return to search

Modélisation multi-échelle de la modification de structure d'un alliage à base de nickel soumis à de très fortes déformations plastiques en surface

La compréhension des effets du grenaillage ultrasonore sur l’intégrité de surface des composants métalliques représente un enjeu industriel important. Dans le cadre de cette thèse, une modélisation physique multi-échelle de la plasticité cristalline à la DEM (Discrete Element Model) a été développée. Le grenaillage ultrasonore consiste à mettre en mouvement des billes à l’intérieur d’une enceinte par vibration de la sonotrode. Les impacts répétés sur le matériau entraînent un écrouissage en surface, l’établissement de contraintes résiduelles de compression et la formation d’une couche nanostructurée. L’objectif de cette thèse est d’obtenir une meilleure compréhension des mécanismes conduisant à ces modifications sur un alliage à base nickel. Le mouvement des billes obtenu par DEM est relié aux modifications de la microstructure sous impacts via un modèle éléments finis utilisant une loi de plasticité cristalline. Après validation de chaque étape par des mesures expérimentales, le modèle a permis d’étudier l’effet de la quantité de billes utilisées dans le procédé. Ainsi, un nombre croissant de billes induit une augmentation d’impacts en biais de faible vitesse permettant de concentrer les contraintes résiduelles de compression en extrême surface. De plus, les simulations multi-impacts utilisant une loi de plasticité cristalline ont montré que ces impacts en biais engendraient une densité totale de dislocations et un niveau de désorientations élevées pouvant expliquer la fragmentation des grains et la nanostructuration de la surface. Enfin, ces modifications de la microstructure, visibles jusqu’à 300 µm de profondeur, sont en accord avec les profils de dureté obtenus par nano-indentation et les profils de désorientation issus de l’analyse EBSD (Electron BackScatter Diffraction). / Ultrasonic shot peening is widely used to improve mechanical properties of metallic components. Mastering the effects of this surface treatment is a major industrial issue. A physical multi-scale modelling based on crystal plasticity and DEM (Discrete Element Model) was developed in this PhD thesis. This process is performed in a closed chamber where spherical balls are moved by sonotrode vibration. Thousands of impacts induce hardening, residual compressive stress and microstructure modification leading to a nanostructured layer. The aim of this work was to improve our understanding of the mechanisms occurring during this process on nickel-based alloys. Ball motion was computed by DEM and linked to microstructure modifications induced by impacts through a crystal plasticity finite element model. Experimental analyses were performed in order to validate each step of the multi-scale modelling. Then the model was applied to investigate ball quantity effects on peened surface modification. Increasing the number of balls created a larger quantity of low speed oblique impacts which concentrated the residual compressive stress near the surface. Furthermore multi-impacts performed with a crystal plasticity law showed oblique impacts enhanced dislocation storage and disorientations within grains, which could explain the nanostructuration of the peened surface. Moreover, the numerical microstructure modification, observed up to 300 µm in depth, was in agreement with hardness profiles obtained by nanoindentation and disorientation profiles measured by EBSD (Electron BackScatter Diffraction) analysis.

Identiferoai:union.ndltd.org:theses.fr/2016LYSEC016
Date30 May 2016
CreatorsRousseau, Thomas
ContributorsLyon, Hoc, Thierry, Nouguier-Lehon, Cécile, Gilles, Philippe
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds