Return to search

Grandes déviations de systèmes stochastiques modélisant des épidémies / Large deviations for stochastic systems modeling epidemics

Le but de cette thèse est de développer la théorie de Freidlin-Wentzell pour des modèles des épidémies, afin de prédire le temps mis par les perturbations aléatoires pour éteindre une situation endémique "stable". Tout d'abord nous proposons une nouvelle démonstration plus courte par rapport à celle établit récemment (sous une hypothèse un peu différente, mais satisfaite dans tous les exemples de modèles de maladie infectieuses que nous avons à l'esprit) par Kratz et Pardoux (2017) sur le principe de grandes déviations pour les modèles des épidémies. Ensuite nous établissons un principe de grandes déviations pour des EDS poissoniennes réfléchies au bord d'un ouvert suffisamment régulier. Nous établissons aussi un résultat concernant la zone du bord la plus probable par laquelle le processus solution de l'EDS de Poisson va sortir du domaine d'attraction d'un équilibre stable de sa loi des grands nombres limite. Nous terminons cette thèse par la présentation des méthodes "non standard aux différences finis", appropriés pour approcher numériquement les solutions de nos EDOs ainsi que par la résolution d'un problème de contrôle optimal qui permet d'avoir une bonne approximation du temps d'extinction d'un processus d'infection. / In this thesis, we develop the Freidlin-Wentzell theory for the "natural'' Poissonian random perturbations of the above ODE in Epidemic Dynamics (and similarly for models in Ecology or Population Dynamics), in order to predict the time taken by random perturbations to extinguish a "stable" endemic situation. We start by a shorter proof of a recent result of Kratz and Pardoux (under a somewhat different hypothesis which is satisfied in all the cases we have examined so far), which establishes the large deviations principle for epidemic models. Next, we establish the large deviations principle for reflected Poisonian SDE at the boundary of a sufficiently regular open set. Then, we establish the result for the most likely boundary area by which the process will exit the domain of attraction of a stable equilibrium of an ODE. We conclude this thesis with the presentation of the "non - standard finite difference" methods, suitable to approach numerically the solutions of our ODEs as well as the resolution of an optimal control problem which allows to have a good approximation of the time of extinction of an endemic situation.

Identiferoai:union.ndltd.org:theses.fr/2017AIXM0209
Date13 July 2017
CreatorsSamegni Kepgnou, Brice
ContributorsAix-Marseille, Pardoux, Etienne
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish, French
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0024 seconds