Un (bio)capteur classique est principalement composé de deux éléments essentiels : une couche réceptrice sensible à l’analyte à laquelle on s’intéresse et un transducteur qui permet de convertir une stimulation chimique / biologique en un signal physique mesurable. Dans le cas idéal, un capteur ne doit pas nécessiter de marquage de la cible, doit posséder de très grandes sensibilité et sélectivité envers elle, ne requiert qu’une faible quantité de cette dernière et doit présenter un temps de réponse très court. Au vu de ces critères, les microsystèmes électromécaniques (MEMS) sont des candidats très prometteurs dans le développement de capteurs. Les polymères fonctionnels, tels que les polymères à empreinte moléculaire (MIPs), sont une approche très intéressante dans l’utilisation des MEMS car ils peuvent être intégrés dans des technologies existantes de MEMS à base de silicium ou complètement remplacer ces technologies. Le but de cette thèse porte sur le développement d’un capteur MEMS composé de polymères (fonctionnels). Un chapitre initial (chapitre 2) introduit des nouveaux systèmes de fabrication de polymères fonctionnels. Des biopuces composées de MIPs imprimés par jet d’encre sont présentées ainsi qu’une technique basée sur la polymérisation radicale contrôlée qui permet le dépôt d’un fin enrobage de MIPs sur des microstructures. La deuxième partie de ce chapitre présente la fabrication de polymères à empreinte moléculaire par stéréolithographie deux-photons, qui peut être vue comme une extension de l’impression 3D. Afin d’illustrer cette technologie de prototypage rapide, deux capteurs composés de MIPs sont présentés : un capteur à grille de diffraction et un capteur en microlevier. Les deux principaux chapitres de ce manuscrit (chapitre 3 et 4) se focalisent sur le développement d’un nouveau concept de fabrication pour les capteurs MEMS. Ce concept est basé sur la polymérisation d’une poutre à fort ratio de forme à l’extrémité d’une fibre optique de télécommunication. Cette poutre a été mise en vibration à sa résonnance et a ainsi pu être utilisée comme un capteur à base de levier. Le capteur en polymère a permis l’intégration de MIPs comme élément récepteur et la reconnaissance sélective de l’antibiotique enrofloxacine. De plus, un nouveau système de mesure intégré est présenté dans le chapitre 4. Ce système de mesure intègre la fibre optique en guidant un rayon laser à travers elle ainsi qu’à travers le levier qui y est attaché.Le rayon lumineux sortant est ensuite focalisé sur une photodiode sensible à la position du rayon lumineux, permettant ainsi la mesure du spectre de résonance de la poutre en polymère. Ce système de mesure est caractérisé et ses performances sont présentées au travers de la détection de masse du levier en polymère et de mesures faites en milieu liquide. / A classical (bio)sensor consists of two key components: A receptor layer that detects the analyte of interest and the transducer which converts the chemical / biological stimuli into a physical measurable signal. Ideally a sensor is label-free, highly sensitive and selective towards the target, requires low sample amount and shows a fast response time. Regarding these criteria microelectromechanical systems (MEMS) offer great potential for the sensor development. One interesting approach for this development are functional polymer materials, such as molecularly imprinted polymers (MIPs), that can be either integrated to existing MEMS based on silicon or completely replace the silicon technology. The emphasis of this thesis is focused on the development of a MEMS sensor based on (functional) polymers. In an initial chapter (chapter 2) new fabrication schemes for functional polymers are introduced. Inkjet-printed biochips based on MIPs are presented and a technique based on controlled radical polymerization is shown that allows the deposition of thin MIP shells on a microfabricated pattern. In the second part of this chapter the fabrication of molecularly imprinted polymers by two-photon stereolithography is shown which can be seen as an extension of 3dimensional printing. As possible application of this rapid prototyping technology two sensors based on MIPs are introduced a diffraction grating sensor and a microcantilever sensor. The two main chapters of this manuscript (chapter 3 and chapter 4) report the development of a new fabrication concept for MEMS sensors. It is based on the polymerization of a high aspect ratio beam on the extremity of an optical telecommunication fiber which was actuated at resonance and thus could be used as a cantilever sensor. The polymer sensor allowed the integration of MIPs as sensing element and the selective recognition of the antibiotic enrofloxacin. Furthermore, is a new, integrated read-out scheme presented in chapter 4. This read-out scheme integrates the optical fiber, by guiding a probe laser beam through it and attached cantilever beam. The output light beam is then focused on a position sensitive photodiode and thus enabled to monitor the resonance spectra of the polymer beam. The read-out scheme is characterized and its performance is shown by demonstrating the mass sensitivity of the polymeric cantilever beam and by measurements in liquid environments.
Identifer | oai:union.ndltd.org:theses.fr/2017COMP2381 |
Date | 08 December 2017 |
Creators | Bokeloh, Frank |
Contributors | Compiègne, Haupt, Karsten, Ayela, Cédric |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds