Return to search

Design of acoustic artificial structured materials : piezoelectric superlattice, gradient index lens, pillar based phononic crystal plate / Conception de matériaux acoustiques artificiels structurés : super-réseaux piézoélectriques, lentilles à gradient d'indice, plaque de cristaux phononiques à base de piliers

Les cristaux phononiques et métamatériaux acoustiques sont des matériaux structurés artificiels qui fournissent un moyen prometteur pour manipuler les ondes acoustiques avec de nombreuses applications potentielles nouvelles. Après une introduction à l'état de l'art, le chapitre 2 propose des multicouches actives à base de structures piézoélectriques résonnantes. Leur transmission et leurs propriétés effectives peuvent être contrôlées activement en changeant les conditions électriques. Le chapitre 3 développe des méthodes d'homogénéisation pour une plaque de cristal phononique et montre pour la première fois la possibilité de contrôler simultanément la propagation de toutes les ondes fondamentales de Lamb. La méthode est appliquée à la conception de lentilles à gradient d'indice. Le chapitre 4 propose un nouveau type de cristal phononique en plaque à base de piliers creux qui met en évidence de nouveaux modes fortement localisés, tels que les modes de galerie, aussi bien dans le gap de Bragg que dans un gap à basse fréquence. Ces modes peuvent être activement accordés en remplissant les parties creuses des piliers avec un liquide dont on contrôle la hauteur ou la température. Le chapitre 5 propose une métasurface acoustique comportant un pilier unique ou une ligne de piliers déposés sur une plaque. Ces piliers ont des modes de résonance dipolaires et monopolaires qui sont très sensibles aux paramètres géométriques des piliers. Nous étudions en détail l'amplitude et la phase des ondes émises lorsqu'une onde incidente est diffusée par les piliers et montrons qu'elles peuvent être décrites comme des ondes émises par les piliers résonnants comme sources d'ondes acoustiques. / Phononic crystals and acoustic metamaterials are artificial structured materials which provide a promising way to manipulate acoustic/elastic waves with many novel potential applications. After an introduction to the state of the art, the 2nd chapter designs actively controlled multilayers with piezoelectric resonant structures. The corresponding transmission and effective properties can be tuned by changing the electric boundary conditions of the piezoelectric materials. The 3rd chapter develops homogenization methods for phononic crystal plates and demonstrates for the first time the possibility of controlling simultaneously all the fundamental Lamb waves. The full control method developed here is applied to the design of various gradient index lenses that can exhibit several functionalities such as wave focusing or wave beaming. The 4th chapter designs a new type of phononic crystal/metamaterial plate with hollow pillars that exhibits several new localized modes, such as whispering-gallery modes, inside both Bragg and low frequency band gaps. These modes can be actively tuned by filling the hollow parts with a liquid for which the height or the temperature is controlled. The 5th chapter proposes acoustic metasurface consisting of a single pillar or one line of pillars deposited on a thin plate. Local resonances of dipolar and monopolar symmetries can be characterized which are very sensitive to the pillar’s geometric parameters. We study the amplitude and phase of the waves resulting from the scattering of an incident wave by the pillars and show that they can be described as dipolar or monopolar waves emitted by the pillar resonators as acoustic sources.

Identiferoai:union.ndltd.org:theses.fr/2017LIL10011
Date17 February 2017
CreatorsJin, Yabin
ContributorsLille 1, Tongji university (Shanghai, Chine), Djafari-Rouhani, Bahram, Pan, Yongdong
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0037 seconds