Return to search

Compréhension de la tribologie des films limites : de l'organisation moléculaire à la réponse en friction

Le contrôle de la friction en régime limite s’effectue par le biais de lubrifiants qui, par l’adsorption de molécules sur les surfaces, réduisent les contacts directs entre aspérités. Dans ce contexte, l’objectif de cette thèse est de comprendre et de coupler les mécanismes, à la fois, d’adsorption et d’auto-organisation de différents acides gras sur des surfaces, et les mécanismes de friction interfaciale sous des conditions stationnaires et transitoires. L’effet de l’architecture moléculaire, modifiée par la présence et la conformation d’une insaturation dans la chaîne aliphatique des acides gras, a également été analysé. La caractérisation in-situ, à l’échelle moléculaire, a été réalisée avec le tribomètre moléculaire ATLAS développé au LTDS. Cet appareil permet des déplacements quasi-statiques et dynamiques, d’une sphère mise en regard d’un plan, suivant trois axes. Trois solutions d’acides gras, en faible concentration dans du dodécane, ont été analysées. Les déplacements et les forces, normaux et tangentiels, sont mesurés à l’aide de capteurs capacitifs d’une résolution respective de 0.015 nm et 10 nN. Des sollicitations dynamiques superposées permettent de caractériser simultanément la rhéologie de l’interface confinée en termes d’amortissement et de raideur, dans les deux directions. Les résultats montrent que les acides gras s’adsorbent par interaction physique sur les surfaces pour former des films visco-élastiques d’une épaisseur d’environ 15 Å sur chaque surface. Le taux de couverture et la cinétique d’adsorption de ces couches dépendent de l’architecture moléculaire des acides gras. Cette dernière gouverne également la friction interfaciale, qui a été qualifiée de supraglissement, et la rhéologie des monocouches auto-assemblées. Les différentes organisations de films conduisent ainsi à différentes évolutions de la friction en fonction de la vitesse de glissement et de la pression de contact. La réponse en friction transitoire et l’accommodation lors du glissement vers un nouvel état stationnaire ont de plus été décrites par des distances caractéristiques, de plusieurs nanomètres, reflétant le renouvellement statistique des spots de contact, et par des temps de relaxation, de l’ordre de la seconde, décrivant le réarrangement moléculaire au sein de l’interface. Enfin, une modélisation théorique de la friction limite a été proposée afin de comprendre l’origine moléculaire de la friction entre monocouches d’acides gras mettant ainsi en évidence le couplage fort de deux échelles spatiales et temporelles. / Friction in boundary lubrication can be controlled by the adsorption of molecules on surfaces that reduce direct contacts between asperities. In this context, the aim of this thesis is to understand and to couple the mechanisms of adsorption and self-organization of different fatty acids on surfaces, with the mechanisms of interfacial friction under steady-state regime and transient conditions. The effect of the molecular architecture, modified by the presence and conformation of one unsaturation in the aliphatic chain of fatty acids, was also analyzed. In-situ characterization, at the molecular level, was performed with the molecular tribometer ATLAS, developed at LTDS. This apparatus allows quasi-static and dynamic displacements, of a sphere in front of a plane in three directions. Three fatty acids solutions, in low concentration in dodecane, were analyzed. The displacements and the forces, normal and tangential, are measured using capacitive sensors with a resolution of 0.015 nm and 10 nN respectively. Dynamic superimposed measurements allow a simultaneous rheological characterization of the confined interface in terms of damping and stiffness in two directions. The results show that the fatty acids adsorb on the surfaces by weak interactions and form viscoelastic films with a thickness of about 15 Å on each surface. The coverage rate and adsorption kinetics of these layers depend on the molecular architecture of the fatty acids. This architecture also governs interfacial friction, which has been described as superlubricity, and the rheology of self-assembled monolayers. Various film organizations have thus led to different evolutions of the friction as a function of the sliding speed and the contact pressure. The transient friction response and its accommodation during slip to a new stationary state have also been described by characteristic distances of several nanometers, reflecting the statistic average renewal of the contact spots, and by relaxation times of the order of the second, describing the molecular rearrangement within the interface. Finally, theoretical modeling of boundary friction has been proposed to understand the molecular origin of the friction between monolayers of fatty acids and highlight the strong coupling between both spatial and temporal scales.

Identiferoai:union.ndltd.org:theses.fr/2017LYSEC021
Date12 June 2017
CreatorsCrespo, Alexia
ContributorsLyon, Cayer-Barrioz, Juliette, Mazuyer, Denis, Morgado, Nazario
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds