Return to search

Synthèse et évaluation d'agents de contraste destinés à la détection multimodale d'une activité enzymatique / Synthesis and evaluation of molecular probes dedicated to MRI and optical imaging for enzymatic activity detection

L’imagerie médicale a permis à l’Homme de mieux connaitre son anatomie, le fonctionnement de son corps, et de diagnostiquer ses pathologies à des stades de plus en plus précoces, à partir de techniques peu invasives. Au cœur de cette discipline, l’imagerie moléculaire permet d’observer les processus biologiques qui participent au fonctionnement du vivant à des fins exploratoires, diagnostiques, thérapeutiques et aujourd’hui théranostiques. L’activité enzymatique étant à l’origine d’une grande part du métabolisme, la plupart des pathologies implique le dérèglement de celle-ci. L’observation par imagerie moléculaire de cette activité constitue alors un outil prépondérant de l’arsenal médical. Parmi les techniques d’imagerie les plus adaptées à cet enjeu, l’Imagerie par Résonnance Magnétique (IRM) permet d’observer les tissus et organes de façon non invasive, en s’appuyant couramment sur l’administration au patient d’agents de contraste. Ces molécules destinées à renforcer la qualité des images acquises peuvent également être utilisées pour réagir à la présence de cibles biologiques d’intérêt, notamment des enzymes, accompagnant ainsi les clichés obtenus d’informations biologiques et physiologiques. Parmi les nombreux outils pharmacologiques destinés à l’IRM, les complexes de lanthanides ont déjà prouvé leur efficacité en imagerie clinique, et peuvent potentiellement être détectés par trois modalités d’imagerie complémentaires : l’IRM à effets T₁ et paraCEST, et l’imagerie optique. Notre équipe travaille à la conception d’une plateforme modulable permettant de détecter une grande variété d’enzymes. Elle est constituée d’un « déclencheur » qui peut être activé par une enzyme ciblée, relié par l’intermédiaire d’un bras « auto-immolable » à un « rapporteur » assurant la détection de la sonde. Ce dernier se compose d’un chélate de lanthanide qui confère à la sonde des propriétés magnétiques détectables par IRM à effets T₁ et paraCEST. Par ailleurs, une antenne de type pyridine assure l’excitation du lanthanide conduisant à sa luminescence, qui peut être détectée par imagerie optique. L’activation enzymatique de l’agent de contraste conduit à la dégradation du bras « auto-immolable », qui s’accompagne d’une modification détectable des propriétés magnétiques et optiques du rapporteur ainsi libéré. Une plateforme de ce type a été conçue lors de travaux précédents ce projet de thèse pour la détection de l’activité de la β-galactosidase. Cependant le processus de dégradation du bras « auto-immolable » déclenché par l’activité de l’enzyme ne permet pas de libérer le rapporteur sous forme activée. En effet, la cascade électronique à l’origine de ce processus est considérablement ralentie par la coordination du bras « auto-immolable » au lanthanide. Aussi, l’objectif de ce projet de thèse consiste à modifier la structure de ces agents de contraste afin de lever ce blocage cinétique, tout en conservant une détectabilité par les trois modalités d’imagerie citées précédemment.Pour ce faire, six nouveaux analogues ont été synthétisés sous forme de modèles de sondes dénués de leur partie déclencheur, afin de s’assurer de la conservation de leurs propriétés magnétiques et optiques tout en s’affranchissant des difficultés synthétiques liées à la présence de celui-ci. A l’issue de la caractérisation physicochimique de ces derniers, deux structures ont été retenues pour la conception de sondes activables par la β-galactosidase. Une première permettant la détection trimodale de l’activation enzymatique, et une seconde dont la détection par IRM à effets T₁ et paraCEST est pH-dépendante. Enfin, à l’issue de leur synthèse, des tests enzymatiques nous ont permis de suivre les cinétiques d’activation des agents de contrastes obtenus par les modalités d’imagerie prévues pour ces composés. / Medical imaging has allowed Mankind to reach a good knowledge in human anatomy, body operation and to diagnose pathologies earlier and earlier, through minimally invasive techniques. Molecular imaging at the heart of this science enables the sight of biological processes standing in the operation of life for both exploratory, diagnostic, therapeutic and even theranostic means. As a wide part of metabolism is provided by enzymatic activity, its imbalance can mean pathological context. Thus, monitoring enzymatic activity through molecular imaging could become a new power weapon in medical arsenal. Among best adapted imaging techniques to this stake, Magnetic Resonance Imaging (MRI) permits to picture tissues and organs non-invasively, widely through contrast agent prescription. These molecules designed to sharpen acquired images quality can also be used for reaction with biological targets of interest, especially enzymes, thus binding those pictures with biological and physiological data. In the many pharmacological tools associated with MRI, lanthanides complexes have already proven efficiency in clinical imaging, and are likely to be detected through three complementary imaging modalities: T₁-MRI, paraCEST-MRI and optical imaging.Our team achieves the design of a tunable platform that can detect a wide range of enzymes. It is composed of a “trigger” that can be activated by a targeted enzyme, bound through a self-immolative linker to a “reporter” moiety that enables the probe to be detected. The latter is endowed with a lanthanide chelate that gives the probe magnetic and optical properties that can be monitored by T₁-MRI or paraCEST-MRI. In addition, a pyridine antenna enables lanthanide sensitization and luminescence, that can be detected by optical imaging. Upon enzymatic activation, self-immolation of the linker causes the release of the reporter moiety, and the modification of its magnetic and optical properties.Previous work in our team has achieved the synthesis of a probe following these concepts and aiming at β-galactosidase activity detection. However, enzyme-triggered self-immolation of the probe did not release the activated reporter moiety, due to the linker’s coordination to the lanthanide. This PhD project is thus intended to modify the chemical structure of this platform to enhance its activation kinetics, while keeping it detectable by MRI and optical imaging. To reach this goal, six novel analogues have been synthetized as models without trigger moiety to check the preservation of magnetic and optical properties while making synthesis easier and faster. Following probes’ magnetic and optical characterization, two structures were selected for the design of a probe aiming at β-galactosidase activity detection. The first one could enable trimodal detection of its activity, and the second one showed pH-dependency of T₁ and paraCEST effects. After synthesis, enzymatic tests allowed us to monitor enzyme activation kinetics for both probes by the previously scheduled imaging modalities.

Identiferoai:union.ndltd.org:theses.fr/2017SACLS493
Date30 November 2017
CreatorsJouclas, Rémy
ContributorsParis Saclay, Durand, Philippe
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0058 seconds