Return to search

Modeling human neural development and diseases using pluripotent stem cells / Modélisation des maladies neurodéveloppementales humaines à l'aide de technologies innovantes : cellules souches, édition génomique et mini-cerveau

La microcéphalie est une maladie neurologique du nouveau-né qui se traduit par une circonférence réduite de la tête, une déficience intellectuelle et des défauts anatomiques du cerveau. La microcéphalie peut être la conséquence d’une infection, de stress environnementaux ou de mutations génétiques.Le cerveau commence à se former dès la cinquième semaine de grossesse et est majoritairement constitué de cellules souches neuronales, cellules qui conservent une capacité a se reproduire a l’identique sans se spécialiser. Cette première phase de prolifération est importante pour générer suffisamment de cellules. Suit une phase de différenciation, durant laquelle les cellules préalablement formées se différencient en deux groupes : les neurones, qui permettent de partager l’information grâce à des influx électriques, et les cellules gliales, qui soutiennent activement les fonctions des cellules neuronales.Je m’intéresse à un gène en particulier, KNL1, muté chez certains patients microcéphales. Grace aux nouvelles techniques d’édition du génome, j’ai reproduit la mutation retrouvée chez les patients dans des cellules souches pluripotentes humaines. En utilisant un modèle tridimensionnel (mini-cerveaux en culture), à partir de cellules souches neuronales, j’ai analysé de manière quantitative les étapes-clés de développement: les phases de prolifération et de différenciation.Mes travaux de recherche ont montré que les cellules souches neuronales portant la même mutation que les patients prolifèrent moins, réduisant le nombre de cellules initiales nécessaires au développement cérébral normal. Par ailleurs, les cellules souches neuronales se différencient prématurément en neurones et cellules gliales, ce qui réduit davantage le nombre le nombre final de cellules. Cette hypothèse a été confirmée par l’utilisation du modèle tridimensionnel, ou les mini-cerveaux sont plus petits que la normale.Cette étude est essentielle non seulement pour comprendre le développement de la maladie, mais également pour comprendre les étapes clés du développement du cerveau humain, et ne pourrait pas être mener à bien sur des modèles animaux. En outre, l’utilisation de cellules souches induites nous permet de ne pas utiliser de cellules embryonnaires, si nécessaire pour raisons d’éthique. / Microcephaly is a neurological condition, resulting in patients having a small head circumference, intellectual impairment and brain anatomical defects. A pre-requisite for achieving a better understanding of the cellular events that contribute to the striking expansion of the human cerebral cortex is to elucidate cell-division mechanisms, which likely go awry in microcephaly. Most of the mutated genes identified in microcephaly patient encode centrosomal protein, KNL1 is the only gene that encodes a kinetochore protein, it plays a central role in kinetochore assembly and function during mitosis. While the involvement of centrosome functions is well established in the etiology of microcephaly, little is known about the contribution of KNL1.In an attempt to assess the role of KNL1 in brain development and its involvement in microcephaly, we generated isogenic human embryonic stem cell (hESC) lines bearing KNL1 patient mutations using CRISPR/Cas9-mediated gene targeting. We demonstrated that the point mutation leads to KNL1 reduction in neural progenitors. Moreover, mutant neural progenitors present aneuploidy, an increase in cell death and an abrogated spindle assembly checkpoint. Mutant fibroblasts, derived from hESC, do not have a reduced expression of KNL1 and do not present any defect in cell growth or karyotype, which highlight a brain-specific phenotype.The subsequent differentiation of mutant neural progenitors into two-dimensional neural culture leads to the depletion of neural progenitors in the favor of premature differentiation. We developed a three-dimensional neural spheroids model from neural progenitors and reported a reduced size of mutant neural spheroids, compare to control. Lastly, using knockdown and rescue assays, we proved that protein level of KNL1 is responsible of the premature differentiation and the reduced size.These data suggest that KNL1 has a brain-specific function during the development. Changes in its expression might contribute to the brain phenotypic divergence that appeared during human evolution.

Identiferoai:union.ndltd.org:theses.fr/2017SACLS589
Date19 December 2017
CreatorsOmer, Attya
ContributorsParis Saclay, Aubourg, Patrick, Jaenisch, Rudolf
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0028 seconds