Analyse d'équations intégro-différentielles et d'EDP non locales issues de la modélisation de dynamiques adaptatives / Analysis of integro-differential equations and nonlocal PDEs arising in the modelling of adaptive dynamics

Ce manuscrit de thèse porte sur l’analyse mathématique de modèles intégro-différentiels issus de la génétique des populations. Les deux modèles étudiés sont des équations de réaction-dispersion de type ∂tp(t,m) = UD[p](t,m) + f[p](t,m). Ils décrivent la dynamique de la distribution de la fitness (ou valeur sélective) dans une population asexuée sous l’effet des mutations et de la sélection représentées respectivement par les termes non locaux UD[p](t,m) et par f[p](t,m). La différence entre les deux modèles se situe au niveau du terme de mutation. En effet, dans le premier modèle, les effets des mutations sur la fitness ne dépendent pas de la fitness du parent, cela se traduit donc par un terme de convolution classique : D[p](t,m) =RR J(m−y)p(t,y)dy−p(t,m). Lorsqu’une mutation a lieu, la fonction J(m−y) représente la densité de probabilité pour un individu de fitness y d’avoir un descendant de fitness m. Le taux de mutation est donné par la constante U. Dans le second modèle, les effets des mutations sur la fitness dépendent aussi de la fitness du parent. Dans ce cas, un individu de fitness y a un descendant de fitness m avec la densité de probabilité Jy(m−y). Ce type de dépendance apparaît naturellement lorsque l’on suppose qu’il existe une fitness optimale (ou encore un optimum phénotypique). Pour chacun des deux modèles, nous établissons dans un premier temps des résultats d’existence et d’unicité ainsi que des propriétés de décroissance de la solution. Cette décroissance permet de définir la fonction génératrice des cumulants (CGF) associée à la distribution de fitness. La CGF est la solution d’une équation de transport non locale. Pour le premier modèle, l’étude de cette équation permet d’obtenir une solution analytique et donc d’obtenir une description complète de la distribution p(t,m) via ses moments. Nous étudions ensuite les états stationnaires pour chacun des deux modèles, et établissons des conditions suffisantes pour l’existence et la non-existence de phénomènes de concentration, correspondant à une accumulation d’individus de phénotypes optimaux. Nos résultats sont comparés à des sorties de modèles stochastiques individu-centrés représentant le même type de dynamiques évolutives. / This manuscript is devoted to the mathematical analysis of integro-differential models from population genetics. Both models are reaction-dispersion equations of the form ∂tp(t,m) = UD[p](t,m)+ f[p](t,m). They describe the dynamics of fitness distribution in an asexual population under the effect of mutation and selection. These two processes are represented by the nonlocal terms UD[p](t,m) and by f[p](t,m) respectively. The difference between the models rests on the mutation term. Indeed, in the first model, the mutation effects on fitness do not depend on the fitness of the parent. Thus, the mutation term is a standard convolution product: D[p](t,m) =RR J(m−y)p(t,y)dy −p(t,m). When a mutation occurs, the function J(m − y) represents the density of probability for an individual with fitness y to have an offspring with fitness m. The mutation rate is given by the constant U. In the second model, the mutation effects on fitness depend on the fitness of the parent. In this case, an individual with fitness y has an offspring with fitness m with a probability density Jy(m−y). This type of dependence naturally arises when the existence of an optimal fitness (or a phenotypic optimum) is assumed. For both models, we first establish existence and uniqueness results as well as decay properties of the solution. The decay property allows us to define the cumulant generating function (CGF). The CGF obeys a nonlocal transport equation. In the first model, we compute the analytical solution of this transport equation and thus, we obtain a complete description of the distribution p(t,m) through its moments. Then, we study the stationary states for both models, and establish sufficient conditions for the existence and non-existence of a concentration phenomenon corresponding to an accumulation of individuals with best possible phenotype. The results are compared to the results of stochastic individual based models which represent the same kind of evolutionary dynamics.

Identiferoai:union.ndltd.org:theses.fr/2018AIXM0346
Date19 September 2018
CreatorsGil, Marie-Ève
ContributorsAix-Marseille, Hamel, François, Roques, Lionel
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench, English
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0025 seconds