Return to search

Vibration Analysis and Reduction of Cable-Driven Parallel Robots / Analyse et réduction des vibrations des Robots Parallèles à Câbles

Cette thèse vise à améliorer le positionnement statique et la précision de suivi de trajectoire des Robots Parallèles à Câbles (RPC) tout en prenant en compte leur élasticité globale. A cet effet, deux stratégies de commandes complémentaires valables pour toute configuration de RPC sont proposées.Tout d'abord, une analyse de robustesse est réalisée pour aboutir à une commande robuste des RPC référencée modèle. Un modèle de RPC approprié est défini en fonction de l'application visée et les principales sources d'erreurs de pose de la plate-forme mobile sont identifiées.Une première méthode de commande est proposée sur la base des résultats de l'analyse de robustesse. Cette première méthode réside dans le couplage d'une commande référencée modèle d’un contrôleur PID.Dans le cadre de cette thèse, un modèle élasto-dynamique de RPC est exprimé afin de compenser le comportement oscillatoire de sa plate-forme mobile dû à l'élongation des câbles et de son comportement dynamique.La deuxième méthode de commande utilise des filtres "input-shaping" dans la commande référencée modèle proposée afin d'annuler les mouvements oscillatoires de la plate-forme mobile. Ainsi, le signal d'entrée est modifié pour que le RPC annule automatiquement les vibrations résiduelles. Les résultats théoriques obtenus sont validés expérimentalement à l'aide d'un prototype de RPC non redondant en actionnement et en configuration suspendue. Les résultats expérimentaux montrent la pertinence des stratégies de commande proposées en termes d'amélioration de la précision de suivi de trajectoire et de réduction des vibrations. / This thesis aims at improving the static positioning and trajectory tracking accuracy of Cable- Driven Parallel Robots (CDPRs) while considering their overall elasticity. Accordingly, two complementary control strategies that are valid for any CDPR configuration are proposed.First, a robustness analysis is performed to lead to a robust model-based control of CDPRs. As a result, an appropriate CDPR model is defined as a function of the targeted application and the main sources of CDPR moving-platforms pose errors are identified.A first control method is determined based on the results of the robustness analysis. This first method lies in the coupling of a model-based feed-forward control scheme for CDPR with a PID feedback controller.Here, an elasto-dynamic model of the CDPR is expressed to compensate the oscillatory motions of its moving-platform due to cable elongations and its dynamic behavior.The second control method uses input-shaping filters into the proposed model-based feed-forward control in order to cancel the oscillatory motions the movingplatform. Thus, the input signal is modified for the CDPR to self-cancel residual vibrations.Experimental validations are performed while using suspended and non-redundant CDPR prototype. The proposed feed-forward model-based control schemes are implemented, and their effectiveness is discussed.Results show the relevance of the proposed control strategies in terms of trajectory tracking accuracy improvement and vibration reduction.

Identiferoai:union.ndltd.org:theses.fr/2018ISAR0034
Date11 December 2018
CreatorsBaklouti, Sana
ContributorsRennes, INSA, Ragneau, Eric
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds