Return to search

Numerical and experimental modeling of blood flow in the arteries / Modélisation expérimeentale des écoulements sanguins dans les artères

Le but de cette recherche consiste à la modélisation numérique et expérimentale d’écoulement sanguin dans les artères, en utilisant les nouvelles méthodes de couplage fluide structure. Plusieurs approches numériques peuvent être utilisées pour ce type de couplage, la méthode des éléments finis pour la modélisation de la structure. Pour la modélisation du domaine fluide la méthode de type éléments fnis ou méthode particulaire, Smooth Particle Hydrodynamic method, (méthode SPH) peuvent utilisées. Afin de valider ces deux méthodes numériques, Eléments Finis et SPH, une première application consiste à la modélisation numérique du gonflement d’une membrane en caoutchouc. Pour cette application des données expérimentales sont disponibles pour la validation des résultats numériques. Pour le matériau caoutchouc, une loi de comportement de type Mooney Rivlin est utilisée. Pour la structure la méthode des éléments finis, formulation coque est utilisée, pour le fluide nous avons opté pour la méthode particulaire SPH. Concernant la sensibilité par rapport au maillage, plusieurs maillages pour la modélisation des domaines fluide et structure sont testés. Une bonne corrélation en terme de déplacement et de vitesse du centre de la membrane, entre les résultats numériques et données expérimentales a été observée. Cette application est publiée dans un journal international de rang A.La seconde formulation développée dans le manuscrit consiste à la modélisation et simulation numérique du problème en vue. La méthode de couplage de type Euler Lagrange, une formulation Eulerienne à maillage fixe pour le fluide et une formulation Lagrangienne pour la structure, est utilisée pour la modélisation de l’écoulement sanguin dans les artères. Différentes méthodes de pénalisation pour le couplage fluide structure ont été testées. Pour une meilleure consistance, plusieurs types de maillages fluide et structure ont été analysés, and des pas de temps vérifiant la condition de stabilité. Comme très peu de résultats expérimentant dans le domaine biomécanique sont disponibles. Les résultats numériques sont comparés aux résultats théoriques publiés dans la littérature. Une bonne corrélation entre les résultats numériques et les données théorique a été signalée dans le manuscrit. Ces résultats sont publiés dans un Journal International de rang A. / The aim of this thesis is to investigate blood flow in arteries using Fluid-Structure Interaction (FSI) numerical approach. There are different approaches which could be used, Finite Element (FE) method for modelling artery wall and either FE or Smoothed Particles Hydrodynamic (SPH) method for blood modeling. In order to investigate the appropriate numerical method to simulate the biomedical problem. both SPH and Finite Element methods were applied. Both methods were first validated for applications where experimental data are available. In order to validate the SPH and FEM method used to simulate the fluid domain and arteries, we investigate a specific problem concerning membrane inflation. Finite Element method with shell formulation was used for the membrane made of rubber material, and SPH Particle method for the fluid. This application has been selected since experimental data are available. Mooney Rivlin constitutive material law for hyper elastic incompressible material is used for the membrane and compressible air for the fluid. For mesh sensitivity and consistency, different meshes for the membrane and different particle numbers for SPH have been investigated, Good agreement with experimental data were obtained in term of displacement and velocity of the membrane center. The application is published in an international Journal with Index Citation. The second formulation developed in the manuscript concerns the fluid structure coupling problem we are interested in. Coupled Eulerian Lagrangian (CEL) approach for the modelisation of Pulse Wave Velocity (PWV) in large arteries. Different penalty methods for the fluid structure coupling have been investigated for good accuracy and consistency of the results using different fluid and structure meshes and time step satisfying stability condition. Since experimental data are not available for these approaches, numerical results were compared to the theoretical theory and previous work published in the literature. This work is published in an International Journal with Index Citation.

Identiferoai:union.ndltd.org:theses.fr/2018LIL1I002
Date19 January 2018
CreatorsElkanani, Hesham
ContributorsLille 1, Souli, Mhamed
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds