Return to search

Géochimie en milieu nanoporeux : application aux verres nucléaires / Nanogeochemistry : application to nuclear glasses

Ce travail de thèse s’intéresse aux interactions entre la solution et la pellicule d’altération, appelée gel, qui se forme lors de la lixiviation des verres borosilicatés d’intérêt nucléaire, et plus spécifiquement dans ce travail, sur le verre à six oxydes ISG. Afin de mieux comprendre les mécanismes de formation du gel, ainsi que ses propriétés de passivation, une étude combinant analyses expérimentales et simulations de dynamique moléculaire (DM) est réalisée.Dans un premier temps, l’étude se focalise sur la structure du verre sain dans le but de mieux appréhender les processus de lixiviation. Pour ce faire, des analyses par spectroscopie RMN sont réalisées. Les résultats sont comparés à ceux obtenus par DM afin de valider la simulation. Cette dernière permet alors une exploration complète de l’ordre à courte et moyenne distances. Elle montre en outre une distribution homogène des formateurs de réseau et l’absence de zones enrichies en bore. Ce dernier, que l’on sait fortement soluble, a tendance à fragmenter le réseau silicaté, affectant de ce fait sa réactivité.Les processus de formation du gel sont ensuite étudiés expérimentalement, dans des conditions favorisant la passivation (90 °C, pH 7, solution saturée en silice). Nous mettons en évidence un fort effet des éléments exogènes en solution, notamment les alcalins faiblement hydratés tels que le potassium et le césium. Ces derniers entrainent ainsi une chute marquée de l’altération du verre. Afin de comprendre cet effet, les gels formés en présence de différents alcalins sont caractérisés. Les analyses montrent un départ congruent du bore et du sodium, et une incorporation du potassium et du césium de la solution qui prennent le rôle de compensateur de charge des unités [AlO4]- assuré par le calcium dans les gels formés en milieux sans alcalin ou contenant des alcalins fortement hydraté comme le lithium ou le sodium. Les différents gels présentent des degrés d’hydratation variés, en accord avec les résultats de simulation de DM de la diffusion de l’eau dans une silice nanoporeuse en milieu alcalin. Ces simulations montrent que la combinaison d’effets stériques (taille des alcalins) et physico-chimiques (énergie d’hydratation) entraine une diminution de la quantité d’eau dans les porosités contenant des ions potassium ou césium.Par ailleurs, les différents gels obtenus dans les conditions d’altération précitées sont fortement polymérisés, indiquant une réorganisation du réseau silicaté à la suite du départ des éléments facilement hydrolysables comme le bore. Cette réorganisation a lieu sans hydrolyse complète des tétraèdres de silicium, ce qui invalide dans ce cas le modèle de formation des gels par dissolution congruente/précipitation. La spéciation de l’eau au sein du gel, obtenue en combinant ATG et RMN du proton, permet de plus de déterminer quantitativement la répartition des atomes d’oxygène au sein du gel (atomes d’oxygène pontants, non pontants ou H2O).Ces données sont alors utilisées pour l’interprétation d’expériences de traçage en milieu enrichi en eau marquée en 18O d’échantillons pré-altérés. Ces expériences, menées à différentes températures, mettent en évidence pour la première fois une réorganisation continue du réseau du gel, avec une diminution au cours du temps de l’accessibilité des espèces mobiles (H2O et hydroxyles) au verre sain du fait de la maturation de la porosité au sein du gel. Nous déterminons différentes diffusivités pour l’eau en fonction de la topologie du gel et proposons l’hypothèse que cette atténuation progressive de la réactivité du réseau soit à l’origine du caractère passivant du gel. / This work aims at understanding water interactions with the altered layer, called gel, formed during borosilicate nuclear glass corrosion. Specifically, we focus on the corrosion of the six oxides ISG. To better understand gel formation mechanisms, as well as gel passivating properties, experimental studies are combined to molecular dynamics simulations.First, this study focuses on the characterization of the pristine glass structure. Experimental analysis (NMR) provides some information to validate the simulated structure. As a result, an improved understanding of the pristine glass short- and medium-range orders is obtained. We also observe that network formers are homogeneously distributed, with no area enriched in boron for instance. Boron is known to be highly soluble, and tends to divide the silicate network, which would affect its reactivity.The gel formation is then studied experimentally in conditions favoring the passivating effect of the glass (90 °C, pH 7, silica-saturated solution). A strong effect of exogenous elements in solution, particularly weakly hydrated alkalis such as potassium and cesium, is observed, with a notable decrease of glass corrosion. To better understand this effect, all gels are characterized. A congruent release of boron and sodium is observed, while potassium and cesium are incorporated. They then act as charge compensator for [AlO4]- units. Calcium usually plays this role in gels formed in solutions with no alkali or containing strongly hydrated alkali such as lithium and sodium. The hydration degree differs for the various gels present, as confirmed by MD simulation of water diffusion in nanoporous amorphous silica in presence of alkali. These simulations highlight a combined impact of sterical effects (alkali size) and physicochemical effects (hydration energy) leading to a decrease of water quantity in the nanopores containing potassium and cesium.Moreover, all the gels formed in the above mentioned leaching conditions are highly polymerized, which indicates a reorganization of the network following the leaching of hydrolysable species such as boron. This reorganization happens without complete hydrolysis of silicon atoms, which invalidate the congruent dissolution/precipitation model in this case. Water speciation inside the gel is determined combining TGA and NMR, giving access to quantitative oxygen repartition in the gel (bridging oxygen, non-bridging oxygen or H2O).This data are then used for the interpretation of tracing experiments carried out in H218O rich solution on prealtered samples. The results demonstrate for the first time that the network reorganizes continuously over time, with a decrease of mobile species (H2O and hydroxyls) accessibility due to the maturation of the porosity within the gel. We determine various water diffusivities as a function of the gel topology and propose the hypothesis that this decreasing reactivity of the network is the source of the passivating nature of the gel.

Identiferoai:union.ndltd.org:theses.fr/2018MONTS066
Date26 June 2018
CreatorsCollin, Marie
ContributorsMontpellier, Gin, Stéphane
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench, English
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0028 seconds