Return to search

Algal and alginate based beads and foams as sorbents for metal sorption and catalyst supports for 3-nitrophenol hydrogenation / Mise en forme de biomasse algale et alginate pour la production d'adsorbants-applications en récupération des ions métalliques et catalyse supportée, hydrogénation du 3-nitrophenol

Ce travail décrit la synthèse d'une série de matériaux à base de biomasse d'alginate et d'algues; ces matériaux ont été conçus sous différentes formes: billes et mousses. Des procédés spécifiques ont été mis au point pour l’utilisation directe de la biomasse algale (AB, sans ajout d’autres polymères) avec le souci de développer un processus de synthèse simple et respectueux de l’environnement (production réduite de sous-produits et sans additif supplémentaire). Ces matériaux ont été testés pour la décontamination d’effluents contenant des métaux lourds (Pb(II) et Cu(II)), mais également pour la valorisation des métaux (métaux du groupe platine, PGM: Pd(II) et Pt(IV)). Différents paramètres opératoires ont été testés afin d'évaluer les capacités de sorption et les étapes limitantes, mais également d'identifier des stratégies d’amélioration des performances d’adsorption. L’incorporation de poly(éthylèneimine) (PEI) est une méthode prometteuse pour augmenter la densité de groupes réactifs (fonctions amines). Différents procédés ont été testés: (a) l'incorporation de particules de PEI réticulées avec du glutaraldéhyde (billes hétérogènes: ABA/PEI), et (b) le greffage homogène de PEI sur de l'alginate (suivi de la réticulation par le glutaraldéhyde) (billes homogènes HABA/PEI). La spectroscopie FTIR et l'analyse MEB& MEB-EDX ont été utilisées pour interpréter les mécanismes de fixation ainsi que pour caractériser la structure des matériaux. Dans une deuxième étape, les matériaux sélectionnés ont été testés pour la catalyse supportée en utilisant la réaction d'hydrogénation du 3–nitrophénol (3-NP). Les résultats sont structurés en 3 parties développées successivement: (a) synthèse des billes d’alginate, AB et AB/PEI et étude de l’adsorption de métaux lourds et de PGMs, (b) comparaison des propriétés d’adsorption du Pd(II) par les billes composites AB/PEI préparées par les voies homogène et hétérogène (et leur application aux tests en catalyse supportée), et (c) la synthèse de mousses poreuses (préparées par réaction entre l’alginate et la PEI) appliquées à l’adsorption du Pd(II) et à la catalyse supportée en réacteur à lit fixe.Si la PEI a un effet limité sur la fixation des métaux lourds (interaction avec les groupes carboxyliques de la biomasse d'alginate ou d'algues), sa présence améliore l’adsorption des métaux dans le cas des PGMs (les groupes amine protonés ont une forte affinité pour les espèces chloro-anioniques du Pd(II)) en particulier pour les billes d'alginate et AB. Tous les adsorbants ont une préférence pour le Pb(II) par rapport au Cu(II) et pour le Pd(II) par rapport au Pt(IV); la présence de PEI limite la sélectivité du matériau pour le Pb(II) et le Pd(II). La capacité de fixation et la stabilité des billes composites d'alginate/PEI ont été améliorées en utilisant le mode de synthèse homogène (la PEI étant dispersée de manière homogène dans la bille avant la réticulation par le glutaraldéhyde). Les deux supports (billes hétérogènes ou homogènes) chargés en Pd(II) (ensuite réduit) ont permis des performances catalytiques comparables bien qu’inférieures à celles des catalyseurs classiques, mais le mode homogène améliore la stabilité à long terme du matériau. Le conditionnement du support catalytique sous forme de mousse a permis de tester la réaction catalytique dans un système à lit fixe : le conditionnement sous forme de mousse améliore les propriétés de transfert de masse par rapport aux billes et la constante de vitesse apparente n'est que légèrement réduite après 30 cycles de fonctionnement. / This work describes the synthesis of a series of materials based on alginate and algal biomass (AB); these materials have been designed under different shapes: beads and foams. Special processes have been developed for directly using the algal biomass (without adding other polymers) with the double objective of simple processing and environmentally-friendly manufacturing (reduced production of sub-products and without additional resources). These materials have been tested first for metal recovery for heavy metal decontamination (Pb(II) and Cu(II)) but also for the valorization of metals (platinum groups metals, PGMs: Pd(II) and Pt(IV)). These studies were performed investigating various operating conditions in order to evaluate sorption capacities and limiting steps but also to identify the processes to be used for improving sorption performance. The incorporation of poly(ethyleneimine), PEI, is a promising method for increasing the density of highly reactive groups (amine functions). Different processes have been tested: (a) the incorporation of particles of PEI crosslinked with glutaraldehyde (heterogeneous beads: ABA/PEI), and (b) the homogeneous grafting of PEI on alginate (followed by glutaraldehyde crosslinking) (HABA/PEI beads). Several techniques have been used for characterizing the sorption process and the structure of developed sorbents, including FTIR spectroscopy, SEM & SEM-EDX analysis. In a second step selected materials have been tested for supported catalysis using the simple reaction of hydrogenation of 3–nitrophenol (3-NP) as a test reaction. The results are structured in 3 parts successively developed: (a) synthesis of alginate, AB and AB/PEI beads and testing for sorption heavy metals and PGMs, (b) comparison of Pd(II) sorption properties of AB/PEI composite beads prepared by the homogeneous and the heterogeneous routes (and their application to supported catalytic tests), and (c) synthesis of highly porous foams (prepared by reaction of alginate with PEI) and the testing of Pd(II) sorption and Pd-supported catalysis (in fixed-bed reactor). While PEI hardly affects the sorption of heavy metals (due to direct interaction with carboxylic groups of alginate or algal biomass), the presence of PEI strongly improves metal binding in the case of PGMs (the protonated amine groups strongly bind chloro-anionic PGM species). All the sorbents have a preference for Pb(II) over Cu(II) and for Pd(II) over Pt(IV), especially for alginate and AB beads because the presence of PEI limits the selectivity of the material for Pb(II) and Pd(II). Both the sorption capacity and the stability of composite alginate/PEI beads were improved while using the homogeneous synthesis mode (the PEI polymer being homogeneously dispersed in the bead before glutaraldehyde crosslinking). The two supports (heterogeneous vs. homogeneous beads) loaded with Pd(II) and subsequently reduced gave comparable catalytic performance (lower than conventional catalysts) but the homogeneous mode improves the long-term stability. The conditioning of the catalytic support as a foam allows testing the catalytic reaction in fixed-bed system: the conditioning improves mass transfer properties compared to beads and the apparent rate constant is only slightly reduced after operating 30 cycles.

Identiferoai:union.ndltd.org:theses.fr/2019MONTG001
Date07 February 2019
CreatorsWang, Shengye
ContributorsMontpellier, Faur, Catherine
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0027 seconds