Return to search

Phase Synchronization In Three-dimensional Lattices And Globally Coupled Populations Of Nonidentical Rossler Oscillators

A study on phase synchronization in large populations of nonlinear dynamical systems is presented in this thesis. Using the well-known Rossler system as a prototypical model, phase synchronization in one oscillator with periodic external forcing and in two-coupled nonidentical oscillators was explored at first. The study was further extended to consider three-dimensional lattices and globally coupled populations of nonidentical oscillators, in which the mathematical formulation that represents phase synchronization in the generalized N-coupled Rossler system was derived and several computer programs that perform numerical simulations were developed. The results show the effects of coupling dimension, coupling strength, population size, and system parameter on phase synchronization of the various Rossler systems, which may be applicable to studying phase synchronization in other nonlinear dynamical systems as well.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-1604
Date01 January 2005
CreatorsQi, Limin
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0015 seconds