Return to search

Mathematical Modeling Of Smallpox Withoptimal Intervention Policy

In this work, two differential equation models for smallpox are numerically solved to find the optimal intervention policy. In each model we look for the range of values of the parameters that give rise to the worst case scenarios. Since the scale of an epidemic is determined by the number of people infected, and eventually dead, as a result of infection, we attempt to quantify the scale of the epidemic and recommend the optimum intervention policy. In the first case study, we mimic a densely populated city with comparatively big tourist population, and heavily used mass transportation system. A mathematical model for the transmission of smallpox is formulated, and numerically solved. In the second case study, we incorporate five different stages of infection: (1) susceptible (2) infected but asymptomatic, non infectious, and vaccine-sensitive; (3) infected but asymptomatic, noninfectious, and vaccine-in-sensitive; (4) infected but asymptomatic, and infectious; and (5) symptomatic and isolated. Exponential probability distribution is used for modeling this case. We compare outcomes of mass vaccination and trace vaccination on the final size of the epidemic.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-1901
Date01 January 2006
CreatorsLawot, Niwas
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0025 seconds