Return to search

Genetic Structure and Demographic Analysis of Key deer (Odocoileus virginianus clavium)

Recent improvements in genetic analyses have paved the way in using molecular data to answer questions regarding evolutionary history, genetic structure, and demography. Key deer are a federally endangered subspecies assumed to be genetically unique (based on one allozyme study), homogeneous, and have a female-biased population of approximately 900 deer. I used 985bp of the mitochondrial cytochrome b gene and 12 microsatellite loci to test two hypotheses: 1) if the Moser Channel is a barrier to gene flow, I should expect that Key deer are differentiated and have reduced diversity compared to mainland deer and (2) if isolation on islands leads to a higher probability of extinction, I should expect that Key deer exhibit a small population size and a high risk of extinction. My results indicate that Key deer are genetically isolated from mainland white-tailed deer and that there is a lack of genetic substructure between islands. While Key deer exhibit reduced levels of genetic diversity compared to their mainland counterparts, they contain enough diversity of which to uniquely identify individual deer. Based on genetic identification, I estimated a census size of around 1,000 individuals with a heavily skewed female-biased adult sex ratio. Furthermore, I combined genetic and contemporary demographic data to generate a species persistence model of the Key deer. Sensitivity tests within the population viability analysis brought to light the importance of fetal sex ratio and female survival as the primary factors at risk of driving the subspecies to extinction.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-2434
Date01 January 2015
CreatorsVillanova, Vicki
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0032 seconds