Return to search

Mechanical Properties Of Carbon Nanotube/metal Composites

Carbon nanotubes (CNTs) have captured a great deal of attention worldwide since their discovery in 1991. CNTs are considered to be the stiffest and strongest material due to their perfect atomic arrangement and intrinsic strong in-plane sp 2—sp 2 covalent bonds between carbon atoms. In addition to mechanical properties, CNTs have also shown exceptional chemical, electrical and thermal properties. All these aspects make CNTs promising candidates in the development of novel multi-functional nanocomposites. Utilizing CNTs as fillers to develop advanced nanocomposites still remains a challenge, due to the lack of fundamental understanding of both material processing at the nanometer scale and the resultant material properties. In this work, a new model was developed to investigate the amount of control specific parameters have on the mechanical properties of CNT composites. The new theory can be used to guide the development of advanced composites using carbon nanotubes, as well as other nano-fibers, with any matrices (ceramic, metal, or polymer). Our study has shown that the varying effect based on changes in CNT dimensions and concentration fit the model predictions very well. Metallic CNT composites using both single-walled carbon nanotubes (SWNT) and multi-walled carbon nanotubes (MWNT), have been developed through a novel electrochemical co-deposition process. Copper and nickel matrix composites were developed by using pulse-reverse electrochemical co-deposition. Uniaxial tensile test results showed that a more than 300% increase in strength compared to that of the pure metal had been achieved. For example, the ultimate tensile strength of Ni/CNTs composites reached as high as about 2GPa. These are best experimental results ever reported within this field. The mechanical results are mainly attributed iv to the good interfacial bonding between the CNTs and the metal matrices and good dispersion of carbon nanotubes within the matrices. Experimental results have also shown that the strength is inversely dependent on the diameter of carbon nanotubes. In addition to the mechanical strength, carbon nanotube reinforced metallic composites are excellent multifunctional materials in terms of electrical and thermal conduction. The electrical resistivity of carbon nanotube/copper composites produces electrical resistivity of about 1.0~1.2 x10-6 ohm-cm, which is about 40% less than the pure copper. The reduced electrical resistivity is also attributed to the good interfacial bonding between carbon nanotubes and metal matrices, realized by the electrochemical co-deposition.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-2545
Date01 January 2010
CreatorsSun, Ying
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0015 seconds