Return to search

Dynamic Task Allocation In Mobile Robot Systems Using Utility Funtions

We define a novel algorithm based on utility functions for dynamically allocating tasks to mobile robots in a multi-robot system. The algorithm attempts to maximize the performance of the mobile robot while minimizing inter-robot communications. The algorithm takes into consideration the proximity of the mobile robot to the task, the priority of the task, the capability required by the task, the capabilities of the mobile robot, and the rarity of the capability within the population of mobile robots. We evaluate the proposed algorithm in a simulation study and compare it to alternative approaches, including the contract net protocol, an approach based on the knapsack problem, and random task selection. We find that our algorithm outperforms the alternatives in most metrics measured including percent of tasks complete, distance traveled per completed task, fairness of execution, number of communications, and utility achieved.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-4495
Date01 January 2008
CreatorsVander Weide, Scott
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.002 seconds