Return to search

Integration Of A Nanostructure Embedded Thermoresponsive Polymer For Microfluidic Applications

This work describes the modeling, synthesis, integration and characterization of a novel nanostructure embedded thermoresponsive material for microfluidic applications. The innumerable applications of thermoresponsive surfaces in the recent years have necessitated the development of a rigorous mathematical treatment for these surfaces to understand and improve their behavior. An analytical model is proposed to describe the transfer characteristic (variation of contact angle versus temperature) of a unique switchable, nanostructured, thermoresponsive surface consisting of silica nanoparticles and the thermoresponsive polymer, Poly(N-isopropylacrylamide ) (PNIPAAm) which changes its wetting angle upon heating. Important metrics such as the absolute lower critical solution temperature, threshold & saturation temperatures and gain are modeled and quantified by mathematical expressions. Based on the modeling, a heat source for the thermoresponsive surface was integrated on the glass substrate itself to create a fully functional smart surface. The design and fabrication of a smart platform consisting of the switchable, nanostructured, thermoresponsive surface with an integrated gold microheater for wettability control and its time response analysis was conducted. The insight gained into the behavior of the thermoresponsive surface by using the analytical model, aided the effort in the effective integration of the surface into a microfluidic channel for flow regulation applications. The implementations of novel microfluidic flow regulator concepts were tested. The aim is to integrate a regulator function to a channel surface utilizing the layer-by-layer (LBL) deposition technique. The characterization and pressure differential study of the microfluidic regulators was carried out on simple straight microchannels which were selectively coated with the thermoresponsive surface. Theoretical and experimental studies were performed to determine the important characteristic parameters including capillary, Weber and Reynolds numbers. The pressure differential data was used to develop critical operating specifications. This work lays out a new microfluidic device concept consisting of a channel with a built-in regulatory function.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-4598
Date01 January 2008
CreatorsLonde, Ghanashyam
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.002 seconds