Return to search

Development of 3D Printed and 3D Metal-Based Micro/Nanofabricated, and Nano-Functionalized, Microelectrode Array (MEA) Biosensors For Flexible, Conformable, and In Vitro Applications

Emerging fields such as "Organs on a Chip", disease modeling in vitro, stem cell manufacturing and wearable bioelectronics are demanding rapid development of 3D Microelectrode Arrays (MEAs) for electrical interfacing with biological constructs. The work reported in this thesis focuses on two developmental tracks: "Dynamic 3D MEAs" and metal microfabrication for 3D MEAs. In the first part of the thesis, we explore the capabilities and limitations of 3D printed microserpentines (µserpentines) and utilize these structures to develop dynamic 3D microelectrodes. Analytical modeling of µserpentines flexibility followed by integration into a flexible Kapton® package and PDMS insulation are demonstrated. These 3D MEAs were further characterized in dynamic impedance measurement experiments and with an artificial skin model demonstrating their potential for wearable bioelectronics. In the second part of the thesis, microfabrication of the 3D metal MEAs for in vitro cell constructs is reported. These were fabricated using laser micromachining in 2D and transitioned out-of-plane to the final 3D conformation by a custom fabricated Hypodermic Needle Array (Hypo-Rig). The 3D metal MEAs were packaged on multiple substrates, and a 3D insulation layer was defined to fabricate microelectrodes that were subsequently characterized mechanically and electrically.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-7855
Date01 January 2019
CreatorsDidier, Charles
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.002 seconds